Covered in Course

- Diode Lasers
- Faraday Isolators
- Fabry Perot Cavities
- Gaussian Beam Propagation
- Optical Coatings
- Acousto-Optic and Electro-Optic Devices
- Vacuum Systems
- Optical Detectors

Applications of Lasers

- Masks for Lithography IC's
- Optical Communication Fiber, Free Space
- Read/Write CD's and Scanners Information Storage, Retrieval
- Frequency Standards Clocks and Masers
- Industrial Machining, Surgery Interaction
- Inertial Sensing Gravity, Rotation
- Precision Measurements Validation of Theories, LIGO, Determining Fundamental Constants, Standard Model

Outline of Lecture

Properties and Requirements of Lasers

- Coherence
- Gain Medium Atoms, Semiconductors
- Amplifier/Cavity

Properties of Gain Medium

- AbsorptionSpontaneous Emission
- Stimulated Emission

Characteristics of Lasers

- 1. Longitudinal (Temporal) Coherence
- 2. Transverse (Spatial) Coherence
- 3. Brightness

Properties of a Gain Medium

Stimulated Absorption

Spontaneous Emission

Stimulated Emission

Coherence

- Correlation in E(r,t) within sample
- Photons in "lock step"
- Plane wave is perfectly coherent

Stimulated Emission

- Coherent and monochromatic

Characteristics of Lasers

- 1. Longitudinal or Temporal Coherence Along k
 - Associated with narrow spectral linewidth

$$\Delta v = (c/\lambda^2) \Delta \lambda$$

- $\Delta v \sim 1$ MHz for a good He Ne Laser or grating stabilized diode laser
- $\Delta v \sim 10$ GHz for incandescent light bulbs

- Coherence Time
 - $T_c = 1/\Delta v$ (Coherence time is the average time between phase interruptions)
 - $T = 1/v_0$ (Period of wave)

- Interruptions lead to spectral broadening
- Coherence Length
 - Average distance over which laser remains coherent
 - $L_c \sim 300m$ for a diode laser with $\Delta \nu \sim 1~MHz$ L_c = cT_c
- 2. Spatial or Transverse Coherence Perpendicular to k
 - Correlation between 2 points on wave front

- θ_d is the divergence angle of a perfectly coherent beam
- D is the diameter of an aperture, or the coherence length of a diffraction limited beam

$$\theta_{c} = \frac{\lambda}{D_{c}}$$

- θ_c is the divergence angle for partially coherent beam
- D_c is the transverse coherence length, the maximum separation for phase correlation

The above figure represents a Gaussian laser beam for which ٠

 $\theta_{1/2} = \lambda / \pi w_o$

- ٠
- w_o is the initial beam radius Gaussian beam is a plane wave at focus •

Incoherent

- Small D_c, therefore rapid spread •
- $D_c < D$

Coherent

- Diffraction Limited Beam
- $D_c = D$

Define

$$M^{2} = \frac{\text{Divergence of partially coherent beam}}{\text{divergence of fully coherent beam}}$$

$$M^{2} = \frac{\theta_{c}}{\theta_{d}} = \frac{\frac{\lambda}{D_{c}}}{\frac{\lambda}{D}} = \frac{D}{D_{c}}$$

$$M^2 = 1$$
 for $D_c = D$ (Coherent)
 $M^2 >> 1$ for $D_c << D$ (Incoherent)

- 3. Brightness •
 - Intensity in the focal plane

- This holds for small angles only
- The brightness should be independent of the diameter since A α D² and θ^2 α λ^2/D^2

$$\mathbf{B} = \mathbf{P} / \pi \lambda^2$$

B is unchanged by a change of lossless optical elements •

$$\mathbf{B} = \mathbf{P}/\mathbf{\Omega}\mathbf{A} = \mathbf{P}/\mathbf{\Omega'}\mathbf{A'}$$

Intensity at focus: •

$$I' = B \Omega'$$

- The intensity is changed by focusing, not the brightness Larger brightness \rightarrow Larger intensity in the focal plane •