Phys 4061 – Lecture Twelve – LEDs and Laser Diodes

Radiative Recombination can be considered as being analogous to spontaneous emission in 2 level atoms.

Wavelength of emission is determined by the bandgap E_g

$$\lambda_{max} = \frac{c}{\nu_{min}} = \frac{hc}{E_g}$$

 $-\lambda_{max} = 10^4$ Å for semiconductors like Si and Ge.

LEDs are based on radiative recombination from a forward biased junction. Require appropriate junctions for visible radiation.

- GaAs ($\lambda_{max} \sim 8000 \text{ Å}$)
- lower melting point than Si facilitates doping
- direct bandgap material

Optical losses from LEDs are due to total internal reflection since the refractive index is generally large $(n \sim 3.6 \text{ for GaAs})$.

Enclosing the junction with a clear plastic case reduces total internal reflection.

Here θ_c the critical angle is larger than for diode air interface.

The hemispherical case insures that most rays have $\theta_i < \theta_c$

Most common applications of LEDs include:

- o displays
- o arrays segmental display, similar to LCD's but even lower power

Laser Diodes utilize stimulated radiative recombination

- o forward bias junction
- o power output depends on current
- o populations of electron-hole pairs related to injected electron density

Note:

For Gas Lasers: D < d (previously covered in this course) Diode Lasers: D > d (mode distribution greater than size of gain medium)

LED vs Laser Diode: Emission Characteristics

Highly coherent output

Partially coherent output

Comparison of gain coefficients of laser diode and gas laser

Line shape is generally Lorentzian due to homogenous broadening from lattice interactions. $g_{max} = 2/\pi\Delta v$ where Δv is the FWHM.

Recall the Lineshape in gas lasers is Gaussian

 $\gamma = ((n_2 - n_1) A g(v) / 8\pi)(\lambda^2/n_i^2)$

where n_2 and n_1 represent densities in the CB and VB respectively. System is similar to 2 level system used earlier in the context of dilute atomic vapours.

- n_i is the index
- n₂ is the density of injected electrons in CB
- Assume $n_1 \sim 0$
- A (analogous to A_{21}) is the rate of recombination

$$\gamma_t = \alpha + \left(\frac{1}{2L}\right) \ln \left(\frac{1}{R_1 R_2}\right)$$

 $-\alpha$ is losses per unit length and R₁ and R₂ are reflectivites of polished diode endfaces

 $\gamma(v = v_o) = \gamma_t$ gain limited by peak value of g(v)

For Diode Laser

$$n_{2Threshold} = \frac{8\pi^2 n_i^2 \Delta \nu \left[\alpha + \left(\frac{1}{2L}\right) \ln \left(\frac{1}{R_1 R_2}\right) \right]}{2\lambda^2 A}$$

- n_i is sufficiently large for reflection and feedback
- sometimes end faces are AR coated

Define: J => current density

The rate of injection of electrons per unit volume is J/qd

The loss rate (including recombination) is Re

 $J/qd = R_{\ell} n_2$ (Steady State)

- Radiation confinement is actually within mode volume determined by D.

$$\begin{split} J/qD &= R_{\ell} n_2 \\ J_t &= \frac{8\pi^2 n_i^2 \Delta \nu}{2\lambda^2} \left(Dq \right) \left(\frac{R_{\ell}}{A} \right) \left[\alpha + \left(\frac{1}{2L} \right) ln \left(\frac{1}{R_1 R_2} \right) \right] \end{split}$$

Example: For GaAs

Given the values below, what is Δv ?

$$\label{eq:relation} \begin{split} A/R_l &\sim 1 \mbox{ (nearly unit quantum efficiency)} \\ \alpha &\sim 10/cm \\ D &\sim 2 \mu m \\ \ell &\sim 500 \ \mu m \end{split}$$

From Δv , find J_t and since $\ell w = (500 \text{ x} 250) \text{ } \mu\text{m}^2$, find the threshold current $\ell w \text{ J}_t$.

Compare this estimate with laser diode operating current.