Phys 4061 – Lecture Eight – Resolution or FPI

So far we assumed a single incident wavelength λ . Now we distinct wavelengths $\lambda_1 \lambda_2$ separated by $\Delta \lambda$. ie $\lambda_2 = \lambda_1 + \Delta \lambda$.

What is the smallest $\Delta\lambda$ that can be resolved?

The resolution of the FPI represents the spectral width of the source due to instrumental broadening.

Condition for Resolving λ_1 and λ_2

Rayleigh Criterion $\delta_{min} = \delta_{FWHM}$ [minimum separation bet peaks that can be resolved]

$$\delta_{\lambda} = \left(\frac{2\pi}{\lambda}\right) p = \left(\frac{2\pi}{\lambda}\right) 2 d\cos\theta$$

For normal incidence

$$\delta_{\lambda 1} = \left(\frac{2\pi}{\lambda}\right) 2d = \frac{4d\pi}{\lambda} = 2m\pi$$
$$\delta_{\lambda 2} = \frac{4d\pi}{\lambda + d\lambda}$$

Note:

$$\begin{split} \delta_{\min} &= \delta_{FWHM} = \frac{4}{\sqrt{F}} = \frac{2\pi}{\mathcal{F}} \\ \delta_{\min} &= \delta_{\lambda 1} - \delta_{\lambda 2} \\ \delta_{\min} &= \delta_{FWHM} \rightarrow \frac{2\pi}{\mathcal{F}} = \delta_{\lambda 1} - \delta_{\lambda 2} \\ 2\pi/\mathcal{F} &= \frac{4\pi d (d\lambda)}{\lambda (\lambda + d \lambda)} (1) \end{split}$$

Define Resolving Power

 $\mathcal{R} = \frac{\lambda}{d\lambda}$ Solve for $\frac{\lambda}{d\lambda}$ from equation 1 so that $\frac{\lambda}{d\lambda} \sim \frac{2\mathcal{F}d}{\lambda} = \mathcal{F}m$

Example:

 $\mathcal{F} \sim 100$ $\lambda \sim 1 \ \mu m$ $d = 100 \ mm$

Estimate:

$$m = 2d/\lambda = 2 \times 10^{5}$$

$$d\lambda = \lambda/\mathcal{F}m = 5 \times 10^{-14} m$$

$$\Delta v = (c/\lambda^{2})d\lambda = 15 \text{ MHz}$$

The same estimate can be obtained by calculating the number of round trip in the cavity.

Free Spectral Range represents the working range with no overlapping orders

Limiting Case

$$(m+1)\lambda_1 = m\lambda_2$$

Remember that $\lambda_2 = \lambda_1 + \Delta \lambda$ _ $\Delta\lambda$ is the free spectral range (FSR) without overlap _

> $(m+1)\lambda_1 = 2d$ (1) $m(\lambda_1 + \Delta \lambda) = 2d \rightarrow m = \frac{2d}{\lambda_1 + \Delta \lambda}$ (2) use (2) in (1) $(\frac{2d}{\lambda_1 + \Delta\lambda} + 1)\lambda_1 = 2d$ Solve for $\Delta\lambda$ $\Delta \lambda = \Delta \lambda_{\rm FSR} = \frac{\lambda_1^2}{2d}$ $\Delta v_{\rm FSR} = \frac{c}{\lambda_1^2} \Delta \lambda_{\rm FSR} = \frac{c}{2d}$

Recall that this is spacing between adjacent modes

Optically Pumped Gas Laser

- Population inversion between 2 and 1 _
- _ No population in 3 because of quick relaxation

Expected Requirement: Pump faster to 2 than decay by spontaneous emission from 2-1

$$dn_2/dt = (R_{21} + A_{21})n_2 - (R_p + R_{12})n_1$$

$$n_3 = 0 \Longrightarrow dn_1/dt = - dn_2/dt$$

Where $R_{21} = B_{21}\rho_v$ (Stimulated Rate), $R_{12} = B_{12}\rho_v$ (Absorption Rate), and R_p = pump rate

- use $R_{12} = R_{21}$ and steady state condition $dn_2/dt = 0$
- Define: $\Delta n = n_2 n_1$

Find $\Delta n = R_p - A_{21}/R_p + A_{21} + 2R_{12}$ As expected, the condition for maintaining an inversion is consistent with the expected requirement that $R_p > A_{21}$.

Note: An should also satify previously derived condition

$$\Delta n \geq \frac{8\pi\gamma_{th}\pi\Delta\nu}{2A_{21}\,\lambda^2}$$

He-Ne mixture is gain medium inside 30 cm cavity with $\mathcal{F} \sim 30$