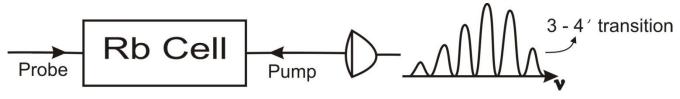

Phys 4061/5061 – Tutorial Eight

Details Pertaining to laboratory experiments covered in this tutorial can be found in the lab manual under the following sections

- 1. Optical Detectors
- 2. Zeeman Shift
- 3. Absorption/ fluorescence Spectroscopy

1. Optical Detectors



- τ_{rise} = time to cross laser beam (for sound waves)
- τ_{delay} = time for sound wave to reach laser beam
- desire RC $< \tau_{rise}$

Termination

- $R_{internal} = 1 M\Omega$ (for typical scope input)
- voltage drop across R_{internal} is the signal
- use a 50Ω resistor in parallel so that $R_{eff} \sim 50\Omega$
- smaller signal amplitude
- $\tau_{rise} \sim \tau_{delay}$ where $\tau_{response}$ is response time of Photodiode

2. Zeeman shift

- F = 3 transitions ⁸⁵Rb \rightarrow F' = 2,3,4
- 3 4' transition has seven degenerate transitions in zero B field
- Review effect of optical pumping with B field on
- Review effect of line strength with B field on

3. Atomic Structure in ⁸⁵Rb

Notation:

$$n^{2S+1}L_{J} \\$$

Example:

$$L = 0, 1, 2, 3, 4$$

$$S = \frac{1}{2}$$

Fine Structure

$$L = 0$$

$$J = L + S = \frac{1}{2}$$

5²S_{1/2} Ground State

$$L = 1$$

$$J=L+S=\frac{1}{2},\frac{3}{2}$$

 $5^2P_{1/2}$, $5^2P_{3/2}$ Excited States

Hyperfine Structure For ⁸⁵Rb

$$I = 5/2$$
, $n = 5$, $L = 1$, $J = 3/2$

$$5^{2}P_{3/2}$$

$$F = |I - J| \dots |I + J| \implies F = 1, 2, 3, 4$$