
Physics 4062/5062 – Lecture One

Outline

Applications of Laser Cooled Atoms

Inertial Sensing
Precision Measurements
Atomic Clocks
BEC → Condensed Matter Physics

MOT – Magneto Optical Trap (Based on radiation pressure force and magnetic interactions)

How does a MOT work?

Laser Cooling (Damping atomic motion)
Magnetic Forces (Trapping atoms)

Discussion of physical picture that describes these effects

Laser Cooling - Underlying Mechanism is the Doppler Shift

Review: Doppler effect for Light in analogy with Doppler effect for sound

Assume v_0 is natural frequency (rest frame) and v_x is the speed of radiating atom (1D treatment)

Source Approaching

$$v' = v_o \left(\frac{c}{c - v_s}\right) = v_o \left(\frac{1}{1 - \frac{V_x}{c}}\right)$$

$$v' = v_o \left(1 + \frac{v_x}{c}\right) \qquad v_x << c$$

$$v' > v_o$$

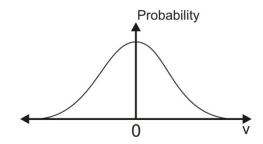
Source Receding

$$v' = v_o \left(\frac{c}{c + v_s}\right) = v_o \left(\frac{1}{1 + \frac{v_x}{c}}\right)$$

$$v' = v_o \left(1 - \frac{v_x}{c}\right)$$

$$v' < v_o$$

Doppler Shift

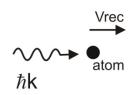

$$v' - v_o = \pm \left(\frac{v_x}{c}\right) vo$$

Fractional Shift

$$\frac{v' - v_o}{v_o} = \pm \frac{v_x}{c}$$

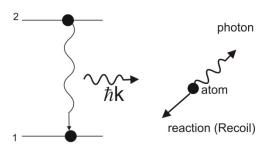
$$\frac{\Delta v}{v_o} = \pm \frac{v_x}{c}$$

The values of v_x correspond to 1D Maxwell-Boltzmann Distribution



Laser Cooling - Differential Absorption due to Doppler Shift

Absorption


• momentum transfer in direction of laser

$$v_{\rm rec} = \frac{\hbar k}{m}$$

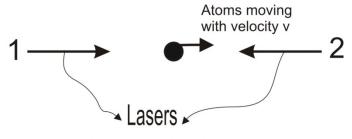
Spontaneous Emission is random and isotropic

Absorption + Spontaneous Emission gives rise to Net Force

$$a = \frac{F}{m} = \left(\frac{1}{m}\right) \left(\frac{\Delta p}{\Delta t}\right) = \left(\frac{1}{m}\right) \left(\frac{\hbar k}{2\tau}\right)$$

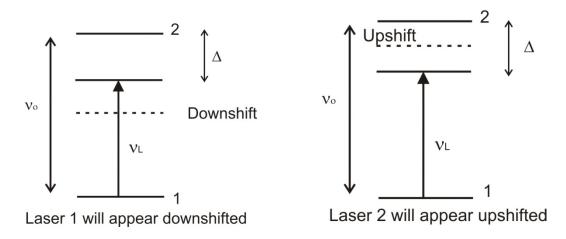
Can show
$$a_{max} = \left(\frac{hk}{m}\right)\left(\frac{\Gamma}{2}\right) = v_{recoil}\left(\frac{\Gamma}{2}\right)$$

Here, τ is the lifetime of upper level and $\Gamma = 1/\tau$ is the radiative rate of the upper level


Assume that a single laser is interacting with atom

$$\widetilde{v}\sim 250~m/s$$

$$v_{rec} \sim 1 \text{cm/s}$$


Need many events to reduce kinetic energy. A limitation is that the Doppler shift will shift atoms out of resonance as the atom slows down.

Two Laser Experiment

In practice derived from the same laser

Combined effect of radiation pressure force due to 2 lasers can lead to damping Force \rightarrow F = - α v

Differential absorption \rightarrow always more absorption from laser opposing motion causing motional damping

6 beam configuration produces $\overline{F_{Net} = -\alpha v}$ Damping Force

• Result: optical molasses (damped atomic motion analogous to motion in highly viscous fluid)

Atom Trapping – Effect of Interaction of Magnetic Moment of atom in magnetic gradient dB/dz

- effect causing Doppler cooling force to become position dependent
- produces restoring force, F = -kx

$$F_{\text{mag}} = -\vec{\nabla}(\mu \cdot \mathbf{B})$$
$$F_{\text{mag}} = \mu \ dB/dz \quad (1D)$$

 $\mu = g_F \mu_B m_F$ (magnetic moment of atom)

- μ_B is the Bohr magniton
- m_F is the magnetic quantum number
- g_F is the Lande g factor
- for fixed (+ve) dB/dz, F_{mag} attracts moment
 - o toward lower field if m is +ve
 - o toward higher field if m is -ve

Zeeman Shift

- energy shift at position $z = \mu \frac{dB}{dz} z = \mu_B g_F m_F \left(\frac{dB}{dz} \right) z$
- Frequency shift at position $z = \left(\frac{\mu_B g_F m_F}{\hbar}\right) \left(\frac{dB}{dz}\right) z = \beta z$

$$\omega_{shift} = \beta_Z$$

Gradient is produced by anti-Helmholtz coil

 Laser cooling force becomes position dependent for specific polarization of laser beams

The working principle of a MOT will be illustrated using an atom with a simple level structure.