Physics 4062/5062 – Tutorial 2 – Polarization

Linearly Polarized

- E field measured in plane perpendicular to direction of propagation •
- **E** orientation constant
- |**E**| and sign vary with time •
- Eg: Laser Output •
- Consider polarizer oriented at angle θ to vertical •

 - $\mathbf{E}_{y} = E_{o} \cos\theta$ is transmitted I_T $\alpha E_{o}^{2} \cos^{2}\theta = I_{o} \cos^{2}\theta \rightarrow$ transmission function
- Note that the plane polarized or linearly polarized light • can be represented as the sum of two orthogonally polarized components that have the same phase

$$\mathbf{E} = (\hat{x}E_{ox} - \hat{y}E_{oy})\cos\left(kz - wt\right)$$

Unpolarized Light

Eg: Light Bulb •

On Average, equal amounts of linearly polarized light transmitted at all polarizer • orientations θ , so that $I_T = I_0/2$

Polarization by Reflection

• Light reflected differently depending on polarization

Circular Polarization

$$E_{oy} = E_{ox}$$

- Circular polarization can be represented as the superposition of two phase shifted linearly polarized components
- Combination of two perpendicular E fields with 90 degree phase shift
- Likewise, linear polarization can be expressed as the sum of two opposite circular polarizations

Wave plates

$\lambda/4$	$\delta = 90^{\circ}$	$ \mathbf{d} \mathbf{n}\perp -\mathbf{n}_{\parallel} = \lambda/4$
$\lambda/2$	$\delta = 180^{\circ}$	$d \mathbf{n}\perp -\mathbf{n}\parallel = \lambda/2$
Λ	$\delta = 360^{\circ}$	$d \mathbf{n}\perp -\mathbf{n}\parallel = \lambda$

- n⊥ and n_{||} are indices of refraction perpendicular and parallel to the optic axis of the wave plate
- Difference in phase velocities along these directions produces a phase shift

Effect of Quarter Wave Plate on Linearly Polarized Light

- 1. $\alpha = \pm 45^{\circ}$ (RHC and LHC), where α is angle of optic axis of wave plate with plane of polarization
 - o Represent incident light as sum of two orthogonal linearly polarized components
 - E field components parallel and perpendicular to optic axis are phase shifted by $\delta = \pi/2$
 - o after $\lambda/4 = >$ result is circularly polarized light
- 2. $\alpha = 0^{\circ} \text{ or } 90^{\circ}$
 - No effect
 - o Linearly polarized output
- 3. $\alpha \neq 45^{\circ}$, 0° or 90°
 - Elliptically polarized output

Half Wave plate

- two quarter wave plates with $\alpha_1 = \alpha_2 = 45^\circ$
- $\delta = \delta_1 + \delta_2 = \pi$, which corresponds to a path difference of $\lambda/2$

Mirror Reversal

- No change in angular momentum of light L
- No transfer of angular momentum to mirror
- Change in polarization RHC changes to LHC

Time Reversal (different from mirror reversal)

- Change in angular momentum
- No change in outgoing polarization
- Angular momentum unchanged

Standing Wave Case

Retro-Reflected Beams for Atom Trap

- opposite angular momentum
- Need σ^+ and σ^-

However, σ +(incident) and σ -(retro) beams will be produced for any orientation of the second QWP.

and Reflected light is σ^-