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Abstract A single-state grating echo interferometer offers unique
advantages for time-domain studies of light–matter interac-
tions using laser-cooled atoms, including applications that
involve precision measurements of atomic recoil, rotation,
and gravitational acceleration. To illustrate the underlying
physics, we first discuss the output signal of the interfero-
meter in the absence of spontaneous emission. The influence
of spontaneous emission, magnetic sublevels, and the spatial
profile of excitations beams on matter wave interference in a
two-pulse interferometer is described, followed by a discus-
sion of transit time limited experiments using a multipulse
technique that offers several advantages. We also exam-
ine the enhancement in signal size achieved by a lattice
interferometer. The sensitivity of the interferometer to mag-
netic gradients and gravitational acceleration is discussed
along with extensions to frequency-domain studies of atomic
recoil and rotation. Applications of coherent transient effects
and echo techniques associated with internal state labeled
interferometers that utilize magnetic sublevels of a single
hyperfine state are considered for precise measurements
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of magnetic interactions such as atomic g-factor ratios. The
article concludes with an overview of the suitability of the tra-
ditional two-pulse photon echo technique for measurements
of atomic lifetimes and studies of superradiant emission in
laser-cooled samples.

1. INTRODUCTION AND DESCRIPTION OF TWO-PULSE
STANDING WAVE INTERFEROMETER

1.1 Introduction

Matter wave interference has intrigued scientists since the early days of
quantum mechanics. It was not until the late 1980s, however, that the field
of atom interferometry was born. There have been a series of beautiful
experiments carried out over the past two decades that have probed the
fundamental nature of matter wave interference using atom interferome-
ters (Berman, 1997). These include interference of “large” objects and of
biomolecules (Hackermüller et al., 2004), interference of independently
prepared particles (Andrews et al., 1997), and the origin of quantum
mechanical complementarity (Durr et al., 1998). Advances in microfab-
rication techniques and the development of laser-cooling and trapping
for neutral atoms has opened up many new possibilities for construct-
ing atomic interferometers (Keith et al., 1988; Weiss et al., 1993). Besides
testing the fundamental nature of matter wave interference, atom inter-
ferometers play an essential role in many high-precision measurements
of fundamental constants, such as the fine structure constant α and the
Newtonian constant of gravity. They offer an independent method for
determining these constants that expands our understanding of the fun-
damental nature of physical laws (Cladé et al., 2006; Fixler et al., 2007;
Weiss et al., 1993). Moreover, precise measurements of quantities such as
the local gravitational field hold promise for technological advances in
navigation and mineral exploration (McGuirk et al., 2002).

This article discusses the physics and various extensions of a particular
atom interferometer design developed at New York University (NYU) in
the mid-1990s (Cahn et al., 1997). The interferometer involves the interac-
tion of a set of pulsed laser fields with a sample of laser-cooled Rb atoms
in a magneto-optical trap. A schematic of the experimental setup of this
interferometer is shown in Figure 1. The principle of the NYU interfer-
ometer is that the interaction of an off-resonant optical standing-wave
pulse (made up of traveling waves with k-vectors k1 and k2) with a two-
level atomic system effectively modulates the atomic ground-state energy
with a spatial period 2π/q, with q = k2 − k1. The pulse therefore acts as
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