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Measuring the atomic recoil frequency using a modified grating-echo atom interferometer
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We describe progress toward a precise measurement of the recoil energy of an atom measured using a modified
grating-echo atom interferometer (AI) that involves three standing-wave (sw) pulses. With this technique, an
additional sw pulse is used to shift the phase of excited momentum states, which produces a modulation in
the contrast of the interference pattern. The signal exhibits narrow fringes that revive periodically at twice the
two-photon recoil frequency, 2ωq , as a function of the onset time of the pulse. Experiments are performed using
samples of laser-cooled rubidium atoms with temperatures �5 μK in a nonmagnetic apparatus. We demonstrate
a measurement of ωq with a statistical uncertainty of 37 parts per 109 (ppb) on a time scale of ∼45 ms in 14 h.
Further statistical improvements are anticipated by extending this time scale and narrowing the signal fringe
width. However, the total systematic uncertainty is estimated to be ∼6 parts per 106 (ppm). We describe methods
of reducing these systematic errors.
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I. INTRODUCTION

There is an ongoing, international effort to develop
precise, independent techniques for measuring the atomic
fine-structure constant α—a dimensionless parameter that
quantifies the strength of the electromagnetic force. These
measurements can be used to stringently test the theory of
quantum electrodynamics (QED). Historically, two types of
determinations of α have been carried out: (i) those that use
other precisely measured quantities to determine α through
challenging QED calculations [1,2], and (ii) those that are
independent of QED. The latter depend on only the quantities
appearing in the definition α ≡ e2/2ε0hc, where e is the
elementary charge, ε0 is the vacuum permittivity, h is Planck’s
constant, and c is the speed of light. Some examples of α

determinations that require QED are the measurements of
the anomalous magnetic moment of the electron [3], and
the fine-structure intervals of helium [4]. The most precise
examples of QED-independent determinations are those based
on measurements of the von Klitzing constant, RK = h/e2,
using the quantum-Hall effect [5,6], and the ratio h/M

using (i) Bloch oscillations in cold atoms [7] and (ii) atom
interferometric techniques [8–11]. Within these examples,
atom interferometry has emerged as a powerful tool because
of its inherently high sensitivity to h/M , which can be related
to α according to

α2 = 2R∞
c

h

me

= 2R∞
c

(
M

me

) (
h

M

)
. (1)

Here, R∞ is the Rydberg constant, me is the electron mass,
and M is the mass of the test atom. Since R∞ is known to 5
parts in 1012, and the mass ratio M/me is typically known to
a few parts in 1010 [12], the quantity that limits the precision
of a determination of α using Eq. (1) is the ratio h/M . The
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most precise measurement of this ratio was recently carried out
in 87Rb, where h/M(87Rb) was determined to 1.2 ppb [11].
Coupled with the most precise measurement of the electron
anomaly, ae [3], this work demonstrated the importance of
hadronic and weak-interaction terms in the series expansion
of ae in powers of α. Other interferometric techniques that have
demonstrated high sensitivity to h/M include Refs. [13–17].

In recent years, the grating-echo atom interferometer (AI)
has emerged as a candidate for precise measurements of the
two-photon recoil frequency, ωq = h̄q2/2M , where h̄q = 2h̄k

is the two-photon momentum and k = 2π/λ is the wave
number of the excitation light [18]. The appeal of this AI
lies in its reduced experimental complexity compared to the
more broadly used, Raman-transition-based interferometers.
Specifically, the grating-echo AI does not require internal state
or velocity selection, and it utilizes only one laser frequency.
Also, since this interferometer uses a single hyperfine ground
state, it has reduced sensitivity to common systematic effects
such as the ac Stark and Zeeman shifts. Low-frequency phase
noise in the standing-wave (sw) excitation beam due to mirror
vibrations is also a negligible concern for three main reasons:
(i) the excitation pulses are short-lived (�1 μs), (ii) the
phase introduced by each sw pulse is common to all excited
momentum states, and (iii) the interference is probed using
intensity detection, which is insensitive to the phase of the
back-scattered light.

The focus of this work is a precise determination of α from
the ratio h/MRb using a modified, three-pulse grating-echo
AI. This AI was described in previous work [19], in which
the qualitative features of the signal were discussed using the
concept of coherence functions. Here, the coherent revival of
interferometer contrast induced by an additional sw pulse was
contrasted with the decoherence brought about by an additional
traveling-wave pulse. Quantitative discussions regarding the
shape of the AI fringes and the dependence on atom-field
parameters (based on a quantum-mechanical treatment) are
described in Ref. [20]. In the same article, we also discussed
connections to δ-kicked rotors and quantum chaos, as well as
scaling laws that apply to excitation with multiple sw pulses
that have been used in other work [21,22]. Other developments
using grating-echo AIs are reviewed in Ref. [23].
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The remainder of this article is organized as follows.
In Sec. II, we provide a description of the interferometer.
Section III briefly discusses the setup of the experiment. Our
primary results are given in Sec. IV, which is followed by
Sec. V with a discussion regarding systematic effects and
future work.

II. DESCRIPTION OF THE AI

The grating-echo AI is a time-domain Talbot-Lau interfer-
ometer [24–26], the principles of which can be understood on
the basis of a plane-wave description of the two-pulse scheme
shown in Fig. 1(a) [18,23,27–30]. The AI relies on matter-wave
interference produced by Kapitza-Dirac scattering of atoms
by short, off-resonant sw pulses. Two sw pulses, spaced
in time by T , are applied to a sub-Doppler laser-cooled
sample with a root-mean-squared (rms) momentum spread of
prms = (MkBT )1/2 � h̄k, where T is the sample temperature
and kB is Boltzmann’s constant. For each atom in the
sample, the first pulse excites a superposition of momentum
states separated by integer multiples, m, of h̄q. The second
excitation pulse further diffracts the momentum states, causing
certain trajectories to interfere in the vicinity of t = 2T ,
which we call the “echo” time. This interference creates a
spatial modulation in the probability density for any given
atom.

Between the pulses, the wave function associated with
each momentum state, |p = p0 + mh̄q〉, evolves with a time-
dependent phase

φ = (p0 + mh̄q)2

2M

t

h̄
= φ0 + φD + φq (2)

due to its kinetic energy. This phase has three contributions: the
initial phase, φ0 = (p2

0/2M)t/h̄, due to the initial momentum
p0 of the atom at the time of the first pulse; the Doppler
phase, φD = mqv0t , where v0 = p0/M; and the recoil phase,
φq = m2ωqt . φ0 is unimportant for interference because it is
the same for all momentum states. At t = 2T , the contribution
to the interference due to the Doppler shift of the moving
atom, φD , is equal for any two overlapping trajectories. Thus,

in a manner reminiscent of photon echoes [31], the Doppler
phase cancels between interfering momentum states for all
initial velocity classes. This results in a macroscopic density
grating in the sample at the echo time. As time elapses, these
momentum states dephase due to the distribution of initial
velocities. Consequently, the echo has a finite coherence time
given by τcoh ∼ (|m − m′|qvrms)−1, which is τcoh ∼ 2 μs for
typical experimental conditions. Here, m and m′ �= m are
integers representing separate interfering momentum states,
|p0 + mh̄k〉 and |p0 + m′h̄q〉, and vrms = prms/M is the rms
velocity of the sample. The remaining phase component of
each momentum state, φq , is due to the recoil of the atom after
m two-photon scattering events induced by the sw excitation
field. This phase determines the contrast of the interference
pattern at t = 2T . An example of two interfering trajectories
is shown in Fig. 1(a), which correspond to m = 1 and m′ = 2.
The contrast of the interference pattern produced by these
trajectories oscillates at a frequency 2ωq as a function of T .
The macroscopic density grating, however, has contributions
from all pairs of interfering momentum states, from all excited
atoms [18], where each pair of states contributes a different
harmonic of ωq to the contrast modulation.

The contrast of the macroscopic grating is measured
by applying a traveling-wave read-out pulse and detecting
the intensity of the coherently Bragg-scattered light in the
backward direction. Due to the nature of Bragg diffraction, this
detection technique is sensitive to only the spatial harmonics of
the density modulation that have a period equal to an integer
multiple of λ/2, where λ is the wavelength of the read-out
light. In the plane-wave picture, only interfering momentum
states that differ by h̄q can produce such a modulation.
Thus, the interferometer is sensitive to only the fundamental
spatial frequency of the grating, q, which produces a temporal
modulation in the grating contrast that oscillates at 2ωq . The
time-integrated power of the back-scattered light (referred to
as the echo energy) is a measure of the contrast produced
by this interference. Experiments utilizing the two-pulse AI,
where the echo energy is measured as a function of T , are
described in Refs. [18,23,28–30,32].

SW1 SW2 RO

Signal

(a)
SW1 SW3 SW2 RO

Signal

(b)
(c)

FIG. 1. (Color online) (a) An example of two low-order trajectories that contribute to the two-pulse AI (SWj = j th sw pulse, RO =
read-out pulse). Three momentum states are shown, (|p0〉, |p0 + h̄q〉, and |p0 + 2h̄q〉), corresponding to the solid, dashed, and dotted lines,
respectively. The sum of the Doppler and recoil phases are indicated for each of the two states that interfere at t = 2T . The Doppler phase
difference, qv0(t − 2T ), is zero at the echo time for all initial atomic velocities, v0 = p0/M . The remaining phase difference, ωq (3t − 4T ),
is a result of atomic recoil, and is equal to 2ωqT at the echo time. (b) Low-order trajectories for the three-pulse AI. Here, a third sw pulse,
SW3, is applied to modify the phase of the interference at 2T . The Doppler phase difference is zero at t = 2T and independent of δT for only
those trajectories that differ by h̄q after SW3 and SW2. (c) Echo energy as a function of δT /τq for the modified AI, where τq = π/ωq is the
recoil period. Line shapes are shown for three different pulse areas, u3, to illustrate the effect of fringe narrowing that occurs for increasing
interaction strength. Here, we assume that only one ground-state magnetic sublevel contributes to the signal.
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For the three-pulse AI used in this work, an additional sw
pulse is applied between the first two pulses at t = δT < T ,
as shown in Fig. 1(b) [19–22,32]. This pulse has the effect
of diffracting the atom into higher-order momentum states
that contribute additional harmonics of ωq to the temporal
modulation of the grating contrast. An example of a pair of
low-order interfering trajectories created by the three-pulse AI
is shown in Fig. 1(b) [33]. When one accounts for all possible
trajectories, the resulting signal consists of a series of narrow
fringes separated by the recoil period, τq = π/ωq (∼32 μs for
rubidium), as a result of the interference between all excited
momentum states that differ by h̄q. Intuitively, the action of
the third sw pulse is to shift the phase of the momentum states
by ηωqδT , where η is an integer that depends on the particular
pathways that lead to interference at t = 2T . Thus, as a func-
tion of δT , the contrast of the interference undergoes periodic
revivals analogous to a multislit experiment in classical optics.

When all relevant trajectories are summed over, it can be
shown [20,32] that the resulting echo energy is modulated by
J0[2u3 sin(ωqδT )]2, provided the third pulse area u3 is small
(i.e., u3 = �2

0τ3/2|�| � 1). Here, J0(x) is the zeroth-order
Bessel function of the first kind, �0 is the one-photon Rabi
frequency, τ3 is the third sw pulse duration, and � is the
detuning from the excited state. Figure 1(c) illustrates the
predicted dependence of the echo energy (for a single ground-
state magnetic sublevel) as a function of δT . The sensitivity of
this AI to ωq scales inversely with the time scale (T ) over which
the signal can be measured, and it scales proportionately with
the width of the fringes. The advantage of using this AI over the
two-pulse configuration is the ability to narrow the fringe width
with the parameters of the third pulse. Additionally, since T is
fixed, the same number of atoms remain in the excitation beams
at the time of detection—thus, there is no signal decay as a
function of δT due to time-dependent effects like the thermal
expansion of the sample. The fringe width is effectively
determined by the width of the excited momentum distribution.
By increasing the proportion of high-order momentum states
(and thus the proportion of high-order harmonics of ωq), that
contribute to the signal, the fringes become more sharply
defined. The excitation is controlled by the interaction strength
and duration of the third sw pulse. It can be shown that,
for small pulse durations [i.e., τ3 	 (|�|/�2

0ωk)1/2, where
ωk = h̄k2/2M], the full width at half maximum (FWHM) of
the signal scales inversely with u3 [20,32]. This feature is also
illustrated in Fig. 1(c).

III. EXPERIMENTAL SETUP

As described in Refs. [30,32], two major improvements to
the grating-echo AI experiment have enabled us to reach time
scales of T ∼ 50 ms: (i) utilizing a nonmagnetizable glass
vacuum system, which reduced decoherence effects related to
inhomogeneous B fields and improved the molasses cooling
of the sample, and (ii) using large-diameter, chirped excitation
beams, which eliminated the differential Doppler shift of the
atom from the two components of the sw pulses and increased
the transit time of the atoms in the beam. Magnetic-field
curvature produced by a stainless-steel vacuum chamber, and
the gravity-induced, differential Doppler shift limited previous
experiments to T � 10 ms [19,20,28].

This experiment utilizes a laser-cooled sample of rubidium
typically containing ∼5 × 109 atoms at temperatures of
T � 5 μK. Either 85Rb or 87Rb atoms are loaded into a
magneto-optical trap (MOT) from a background Rb vapor.
Prior to the AI experiment, the sample is prepared in the
upper hyperfine atomic ground state (5S1/2 F = 3 for 85Rb
or F = 2 for 87Rb). The light for the AI is derived from a
Ti:sapphire laser (linewidth ∼1 MHz) that is locked above the
D2 cycling transition using Doppler-free saturated absorption
spectroscopy. A network of acousto-optic modulators (AOMs)
is used to generate the frequencies necessary for the AI
excitation and the read-out beams. The read-out light is
detuned by �RO = 40 MHz from the cycling transition—a
condition that increases the back-scattered light intensity from
the atoms [32]. The AI beams are detuned by �AI = 220 MHz,
and a frequency chirp of δ(t) = gt/λ is added to (subtracted
from) the downward traveling (upward traveling) component
of the sw pulses such that each excitation is kept on resonance
with the two-photon transition as the sample falls in gravity
[30,32]. Here, g is the gravitational acceleration, and λ is the
wavelength of the AI light. A “gate” AOM is used upstream
of the AI AOMs as a frequency shifter and as a high-speed
shutter to reduce the amount of stray light in the experiment.
All rf sources and digital-delay generators used to define the
pulse timing for the AI are externally referenced to a 10-MHz
rubidium clock.

The AI beams are coupled into two antireflection-coated,
single-mode optical fibers and aligned through the sample, as
shown in Fig. 2(a). At the output of the fibers, the beams
are expanded to a e−2 diameter of d ∼ 1.7 cm and are
circularly polarized (in the σ+-σ+ or the σ−-σ− configuration)
by a pair of λ/4 wave plates. The timing sequence for the
experiment is illustrated in Fig. 2(b). A mechanical shutter on
the upper platform closes before the read-out pulse in order to
block the back-scatter of read-out light produced by various
optical elements. This light would otherwise interfere with the
coherent signal from the atoms. A gated photomultiplier tube
(PMT) is used to detect the power in the back-scattered field.
Figure 2(c) shows an example of the echo signal from the
two-pulse AI.

IV. RESULTS

Measurements of ωq were obtained using the modified
three-pulse AI by measuring the echo energy as a function
of the third pulse time, δT , as illustrated in Fig. 3(a). This
figure shows a measurement of ωq in 85Rb on a time scale of
T ∼ 36.7 ms, which was acquired in ∼15 minutes. Clearly,
the shape of the fringes does not resemble that predicted by
the theory shown in Fig. 1(c). This is due to the contribution
from each of the magnetic sublevels in the F = 3 ground state
of 85Rb, which tend to smear out the higher harmonics in the
signal—a result of the different coupling strengths of these
states. Furthermore, the presence of additional, nearby excited
states (F ′ = 2 and 3 in the case of 85Rb) has been shown to
produce an asymmetry in the fringe line shape [32]. This effect
is reduced in 87Rb because the frequency difference between
neighboring excited states is larger. To measure ωq , the data
are fit to a phenomenological model that consists of a periodic
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FIG. 2. (Color online) (a) Optical setup for the interferometer.
The glass cell has dimensions 7.6 × 7.6 × 84 cm and is oriented
along the vertical. (b) Timing diagram for the AI. The gate AOM is
pulsed on to allow light for each excitation pulse produced by the
k1 and k2 AOMs. The pulse occurring at t = T1 + δT corresponds
to the third sw pulse. The read-out pulse (which is independent of
the gate AOM) and the PMT gate are turned on for ∼9 μs in the
vicinity of the echo time, t = T1 + 2T . (c) Example of a two-pulse
grating-echo signal (from a 10 μK 87Rb sample) recorded by the PMT,
which corresponds to an echo energy of 130 pJ. AI pulse spacing:
T = 1.063 38 ms; pulse durations: τ1 = 3.8 μs, τ2 = 1.2 μs; AI and
read-out beam detunings: �AI = 220 MHz, �RO = 40 MHz; AI and
read-out beam intensity: I ∼ 40 mW/cm2.

sum of exponentially modified Gaussian functions:

F (δT ; τq) =
∑

l

Al exp

[
1

2

(σl

υ

)2
+ δT − lτq

υ

]

× erfc

[
1√
2

(
σl

υ
+ δT − lτq

σl

)]
, (3)

and the recoil frequency, ωq = π/τq , is extracted from the fit.
In this model, erfc(x) is the complementary error function, and
the parameter υ, which determines the amount of asymmetry
in the line shape, is the same for all fringes. The fit to the data
shown in Fig. 3(a) yielded a reduced χ squared of χ2/dof =
0.51 for dof = 300 degrees of freedom. This corresponds to a
relative statistical precision of ∼180 ppb in ωq—representing
a factor of ∼9 improvement over previous work [19].

To demonstrate the statistical uncertainty of the measure-
ment under current conditions, 82 independent measurements
of ωq in 87Rb were obtained (with all other experimental
conditions held fixed to the extent possible). The distribution
of individual recoil measurements is shown in Fig. 3(b). Here,
ωq is determined from a weighted average over all individual
measurements, where the points are weighted inversely pro-
portional to the square of their statistical uncertainties. The
mean value shown in the figure, which has not been corrected
for systematic effects, is found with a relative statistical
uncertainty of 37 ppb, as determined by the standard deviation
of the mean.

An autocorrelation analysis of these measurements indi-
cates that the results are correlated at the 20% level with
measurements taken at a previous time. This is attributed to
slowly varying laboratory conditions over the 14 h of data
acquisition time. The primary contributors to these correlations
are the temperature and the time-varying ambient magnetic
environment of the laboratory, which are currently being
stabilized for a new round of measurements.

A. Systematic effects

We have investigated systematic effects on the measurement
of ωq related to the angle between excitation beams, the
refractive indices of the sample, and the background Rb vapor,
light shifts, Zeeman shifts, B-field curvature, and the sw
pulse durations [32]. The total systematic uncertainty in this
measurement is estimated to be ∼5.7 ppm, and is dominated
by two effects: (i) the refractive index of the sample, and (ii)

(b)

0.062 0.064 0.066

FIG. 3. (Color online) (a) Demonstration of an individual recoil measurement in 85Rb using the modified AI at T = 36.6656 ms. Data
are recorded in two temporal windows separated by 1128 τq ∼ 36.5 ms. The relative statistical uncertainty in ωq is ∼180 ppb, as determined
from a least-squares fit. Inset: expanded view of the fringe near δT = 64 μs. (b) Eighty-two independent measurements of ωq in 87Rb
displayed in chronological order. Each data point was recorded in ∼10 minutes of data acquisition time, with a typical statistical uncertainty of
∼380 ppb. Measurements are scaled by the expected value of the recoil frequency, ω(0)

q = 94.773 847 83(12) rad/ms, which is based on the value
of h/M(87Rb) from Ref. [11] and the F = 2 → F ′ = 3 transition frequency in 87Rb from Ref. [34]. The dashed grid lines indicate the weighted
standard deviation of 339 ppb, and the standard deviation of the mean is 37 ppb. The corresponding reduced χ squared is χ2/dof = 0.93 for
dof = 81 degrees of freedom. The mean value, shown by the solid grid line, is ∼2.8 ppm below the expected value, which is due to systematic
effects. AI pulse parameters: T = 45.4837 ms, τ1 = 2.2 μs, τ2 = 1.4 μs, τ3 = 3 μs, �AI = 219.8 MHz, �RO ∼ 40 MHz, I ∼ 95 mW/cm2.
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the curvature of the B field that the atoms experience as they
fall under gravity. We now discuss these two effects in detail.

The refractive index of the atomic sample affects the wave
vector of the excitation beams, since a photon in a dispersive
medium acts as if it has momentum nh̄k, where n is the index
of refraction [35]. For near-resonant light, the index becomes a
function of both the density of the medium, ρ, and the detuning
of the applied light from the atomic resonance, �AI. The
systematic effect on the recoil frequency due to the refractive
index can be expressed as ωq(ρ,�AI) = ω(0)

q n2(ρ,�AI), where
ω(0)

q is the recoil frequency in the absence of systematic effects.
The index of refraction can be computed from the elec-
tric susceptibility and the light-induced polarization of the
medium [35]. Taking into account the level structure of the
atom, it can be shown that [32]

n(ρ,�HG) =
√

1 − ρ

ε0h̄�

∑
H

μ2
HG

�HG/�

1 + (�HG/�)2
. (4)

Here, �HG ≡ ω − (ωH − ωG) is the atom-field detuning
between the ground and excited manifolds, |g,G〉 and |e,H 〉,
for laser frequency ω. G (H ) is a quantum number representing
the total angular momentum of a particular ground (excited)
manifold, and μHG is the reduced dipole matrix element for
transitions between those manifolds [26].

There are two separate sources of correction due to the
index of refraction in our experiment: the background vapor
of rubidium, and the sample of cold atoms. However, since
the density of background vapor is typically two orders of
magnitude less than the rms density of the trap, the systematic
correction to ωq is dominated by the cold atoms. Nevertheless,
the correction due to the background vapor is non-negligible
(−140 ppb for a background density of ∼5 × 108 atoms/cm3

and �AI = 220 MHz). For the MOT, the rms density at the time
of trap release was measured to be 4.1(1.2) × 1010 atom/cm3

based on time-of-flight images [32]. We estimate a shift in
ωq of −10.5(3.0) ppm at a detuning of �AI = 220 MHz. We
discuss how this systematic can be addressed in Sec. V.

The other dominating systematic effect is due to the inho-
mogeneity of the magnetic field sampled by the atoms during
the interrogation time of the interferometer (2T ∼ 100 ms).
This field primarily originates from nearby ferromagnetic
material, such as an ion pump magnet and a glass-to-metal
adaptor, and from the set of quadrupole coils we use to cancel
the residual field in the vicinity of the MOT [30,32]. To
quantify this effect, we have carried out a calculation similar
to that shown in Ref. [30] where, instead of a field that varies
linearly in space, the local B field along the vertical direction is
modeled by Bz(z) = β0 + β1z + β2z

2/2. Here, the quantities
β0, β1, and β2 are constant, and the curvature is assumed to
be small such that β0 ∼ β1z ∼ β2z

2/2 are all comparable over
the length scale of the interferometer, z ∼ 5 cm. The constant
term in this model, β0, gives rise to a Zeeman shift in each
magnetic sublevel—the effects of which are negligible on this
measurement (∼0.15 ppb for 20 mG of residual B field). In
previous work [30], we showed that there is no systematic
effect on ωq due to β1. Since a constant B gradient gives
rise to a constant force on the atoms, the sole effect of β1

is to phase shift the gratings associated with each magnetic
sublevel—similar to the effects of gravity. There is no shift in

the measurement of ωq due to β1 because the force acts equally
on all pathways of the interferometer. However, the curvature
term β2 is responsible for a position-dependent force similar
to a harmonic oscillator. Thus, for each momentum state
trajectory, the atom samples a different region of space and
experiences a different acceleration than that of a neighboring
trajectory. This picture explains how a curved B field can affect
a measurement of ωq , since the momentum of each trajectory
is differentially modified between excitation pulses.

The contribution to the recoil phase due to the B-field
curvature is proportional to gF mF μBβ2ωqT

3/M , where gF is
a g factor, mF is the magnetic quantum number of the ground
state, and μB is the Bohr magneton. This implies that, even
for a small curvature (∼1 mG/cm2), the phase shift can be
significant (∼1 rad) for moderate pulse spacings (T ∼ 50 ms).
It also explains how small inhomogeneities in the field can lead
to significant decoherence effects and therefore a decrease
in signal lifetime. Under current experimental conditions,
the signal is expected to be dominated by the extreme state
|F,mF = F 〉, where the phase shift is the largest among all
sublevels. For a constant B-field curvature, the corresponding
systematic correction to ωq is

ωq(β2,T ) = ω(0)
q

[
1 + 2

3

(
mF gF μBβ2

M

)
T 2

]
. (5)

Assuming |β2| ∼ 0.1 mG/cm2 = 10−4 T/m2 (an estimate
based on measurements of the B field in the vicinity of
the MOT using a flux-gate sensor) and a time scale of
T = 50 ms, the relative correction to ωq is ∼±11 ppm for
the |F = 2,mF = 2〉 state in 87Rb, where the sign of the shift
depends on the sign of β2. This effect clearly results in a
significant shift in ωq .

However, since neither the spatially varying B field that the
atoms experience nor the distribution of atoms in the ground
state magnetic sublevels is well known, we use a measurement
of the variation in ωq as a function of T to estimate the shift due
to this systematic. In using this method, we implicitly account
for all systematic shifts in ωq that vary with T .

Figure 4 shows measurements of ωq as a function of the
center-of-mass position of the cloud, z = g(2T )2/2, for vari-
ous T . These data were taken under the same conditions as the
measurement shown in Fig. 3(b), and clearly indicate the pres-
ence of a systematic shift in ωq as T changes. This is attributed
to mechanisms that affect ωq as a function of t , where t = 0
represents the release time of the trap. Two examples of such
mechanisms are the spatially varying B field that the atoms
experience as they drop under gravity, and the time-varying
refractive index of the thermally expanding atomic cloud. A
separate observation, where a small change in the canceling
coil currents produced a shift in the echo time for large T ,
indicates that the recoil phase φq can be modified by magnetic
effects. These data provide convincing evidence that a B-field
curvature contributes to the overall systematic shift of ωq .

For the purpose of determining the systematic shift on ωq

due to all time-varying effects, we have fit the data shown
in Fig. 4 to a third-order polynomial. With this method, the
determination of the appropriate shift amounts to finding the
difference between the vertical offset of the fit function, and
the value of the function corresponding to a pulse spacing of
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FIG. 4. (Color online) Measurements of ωq as a function of z =
g(2T )2/2. The vertical axis is scaled by the expected value of ω(0)

q =
94.773 847 83 rad/ms for excitation light at �AI = 219.8 MHz above
the F = 2 → F ′ = 3 transition in 87Rb. The variation in ωq spans
roughly 12 ppm, which is attributed to a combination of the spatially
varying B-field curvature and the time-varying refractive index of
the cloud. The canceling B fields were set to achieve the largest
signal lifetime, which in this case is 2T ∼ 120 ms. Measurements of
ωq at each T were taken at random. Repeated measurements at the
same T are mostly consistent, but show a slight variation outside the
statistical uncertainty indicated by the error bars. This is attributed to
instability in the magnetic-field environment of the laboratory. The
red curve is a fit to a third-order polynomial. AI pulse parameters:
τ1 = 2 μs, τ2 = 1.4 μs, τ3 = 2 μs, �AI ∼ 220 MHz, �RO ∼ 40 MHz,
I ∼ 45 mW/cm2.

T = 45.4837 ms (or z = 4.0575 cm). In the absence of any
t-dependent systematic effects, there is no variation in ωq with
T , and this offset will be zero. We estimate the shift due to
all time-varying systematics to be +6.3(4.4) ppm. This shift
is thought to be dominated by the B-field curvature, since a
separate estimate of the shift due to the time-varying refractive
index of the sample gives approximately +2 ppm [32].

V. DISCUSSION AND CONCLUSION

In this section, we discuss techniques for reducing the
aforementioned systematic effects. To reach competitive levels
of measurement uncertainty with this interferometer requires
a reduction in the systematic error by three orders of
magnitude—presenting a significant challenge.

At first glance, Eq. (4) for the refractive index suggests
that the relative correction to ωq can only be reduced by
decreasing the sample density ρ or by increasing the excitation
beam detuning, �AI. However, the current configuration of
the AI relies on a large number of atoms to achieve a
sufficient signal-to-noise ratio. Thus, a decrease in the sample
density leads to a reduction in the signal size. Furthermore,
the sensitivity of the three-pulse AI relies on a relatively
strong atom-field coupling in order to excite many orders of
momentum states. An increase in the excitation beam detuning
without a corresponding increase in the field intensity leads to
a reduction in the sensitivity of the AI to ωq . A 103 reduction
in this systematic could be accomplished by decreasing the
rms density of the sample by a factor of 10, accompanied by
a factor of 100 increase in the detuning. This would require
an increase in the excitation field intensity by a factor of 100
(corresponding to ∼10 W/cm2) in order to retain the same
sensitivity to ωq .

0
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3
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1
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2
=' F
3

='F

4
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85Rb

87Rb

FIG. 5. (Color online) Relative correction to the recoil frequency
due to the refractive index as a function of the detuning of the
excitation field �AI. These curves are based on Eq. (4) with a density
of ρ = 1010 atoms/cm3. Predictions for both 85Rb and 87Rb are
shown. The detuning is plotted with respect to the F = 3 → F ′ = 4
transition in 85Rb, and the F = 2 → F ′ = 3 transition in 87Rb. The
dashed grid lines label the location of excited states [34,36]. The
“magic” frequencies, where the relative correction crosses zero,
are indicated with arrows at �AI ≈ −66.4 MHz for 85Rb and at
�AI ≈ −162.6 MHz for 87Rb.

A closer examination of the frequency dependence of
the refractive index reveals that there is a “magic” detuning
where the relative shift in the recoil frequency (n2 − 1) is
exactly zero, as shown in Fig. 5. This frequency is located
between two excited state manifolds, where the dispersive
corrections to n due to each state have the same magnitude
but opposite signs. For 85Rb, this magic detuning is between
the F ′ = 3 and F ′ = 4 states at �AI ≈ −66.4 MHz, and for
87Rb it is located between the F ′ = 2 and F ′ = 3 states at
�AI ≈ −162.6 MHz, as shown in Fig. 5. Unlike the zero
crossings in the shift that are located in the vicinity of the
two most energetic excited states, these magic frequencies are
off-resonance—which is beneficial for reducing incoherent
transitions due to spontaneous emission during the excitation
pulses. Furthermore, these frequencies depend on only the
reduced dipole matrix elements, μHG, and the relative detuning
between excited states, �HG. Since the magic detuning is
independent of density, it is ideal for canceling both static and
time-dependent shifts in ωq due to the density of the sample,
as well as the background vapor. By utilizing this property of
the index correction, it should be possible to account for this
systematic without reducing the sample density or requiring a
very intense excitation beam. However, further experimental
studies must be carried out to investigate the effect of light
shifts on the excited states, and the corresponding correction
to the magic detunings.

The systematic shift due to the B-field curvature can be
significantly reduced by selecting only the mF = 0 atoms to
participate in the experiment. Then, any systematics due to the
B field would originate from the second-order Zeeman effect
which shifts the mF = 0 sub-levels by an amount proportional
to B2. A standard way of selecting only these atoms is to
first optically pump all of the atoms into the lower hyperfine
ground state. Then, by applying a bias magnetic field to lift
the degeneracy of magnetic sublevels, and using a microwave
pulse tuned across the hyperfine splitting of the ground states
(∼6.835 GHz in the case of 87Rb) to drive a π transition, the
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population of the mF = 0 state can be transferred to the upper
hyperfine level. This can be followed with a unidirectional
“blast” beam, tuned on the repumping transition, to remove the
remaining atoms in the lower state. With this technique, one
can retain ∼1/3 of 87Rb atoms (∼1/5 of 85Rb atoms), but they
are guaranteed to be in the magnetically insensitive mF = 0
sublevel provided the microwave field is tuned correctly.

Utilizing only mF = 0 atoms in the experiment will have
the added benefit of significantly reducing decoherence due
to the B-field curvature—enabling an increase in T and
a corresponding reduction in the statistical error of each
measurement. Under current conditions, we have achieved a
maximum time scale of T ∼ 65 ms. However, previous studies
indicate that the transit time of the atoms in the excitation
beams is ∼270 ms [30], suggesting that T can be as large
as ∼135 ms before the temperature of the sample becomes
the limiting factor. Furthermore, since the |F,mF = 0〉 →
|F ′ = F,mF ′ = 0〉 transition is not allowed, the effects of the
nearest-neighbor excited state (F ′ = 2 in 87Rb) on the line
shape of the AI signal can be reduced if a linearly polarized
excitation beam is used.

It is also desirable to increase the signal-to-noise ratio in
the experiment—a quantity that strongly affects the statistical
uncertainty of the measurement. Using knowledge of the
energy in the back-scattered signal, and the power of the read-
out pulse, it is possible to estimate the reflection coefficient
R of the grating echo. We find R ∼ 0.001 under typical
experimental conditions. The reflectivity can potentially be

increased by preloading the sample in an optical lattice such
that the initial spatial distribution has a significant λ/2-periodic
component [37]. Experimental studies of MOTs loaded into
an intense, off-resonant optical lattice have shown that the
reflection coefficient of the light that is Bragg-scattered off the
resulting atomic grating can be as large as R ∼ 0.8 [38]. This
motivates the pursuit of high-contrast grating production using
a far-detuned lattice pulse that precedes the AI excitations.
Such an endeavor would require an apparatus with good
stability and control of the phase of the sw fields to (i)
effectively channel atoms into the nodes of the lattice potential,
and (ii) to match the phases of the excitation and lattice fields.
However, further theoretical and experimental investigations
must be carried out to examine if the lattice induces additional
systematic effects on the measurement of ωq .

With these experimental improvements, we anticipate that
a future round of measurements will yield results with both
statistical and systematic uncertainties at competitive levels.
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