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Numerical simulation of a multilevel atom interferometer
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We present a comprehensive numerical simulation of an echo-type atom interferometer. The simulation
confirms an interesting theoretical description of this interferometer that includes effects due to spontaneous
emission and magnetic sublevels. Both the simulation and the theoretical model agree with the results of
experiments. These developments provide an improved understanding of several observable effects. The evolution
of state populations due to stimulated emission and absorption during the standing-wave interaction imparts a
time-dependent phase on each atomic momentum state. This manifests itself as an asymmetry in the signal shape
that depends on the strength of the interaction as well as spontaneous emission due to a nonzero population in the
excited states. The degree of asymmetry is a measure of a nonzero relative phase between interfering momentum
states.
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I. INTRODUCTION

In recent years, atom interferometers (AIs) have become an
invaluable tool for a variety of experiments related to precision
measurements and inertial sensing using cold atoms [1–13].

The echo-type AI used in this work [4,13–17] functions on
the basis of phase modulation of the atomic wave function due
to the interaction with standing-wave (sw) pulses. Although
this phase modulation is directly connected to the recoil energy,
its functional form has a complicated dependence on a number
of mechanisms—such as the dynamic population of magnetic
sublevels, phase shifts due to spontaneous and stimulated
processes, and the excitation of multiple momentum states.
Some of these mechanisms have been studied in previous
works [14–16,18], but many aspects of the AI are not fully
understood. In this work, we address all of these effects on
the basis of a comprehensive numerical simulation and an
improved analytical model.

The simulation presented here successfully models data us-
ing measured experimental parameters as inputs and completes
our understanding of a broad class of observable effects. One
such effect is an asymmetry in the shape of signals produced
by the AI, which is a manifestation of a nonzero relative phase
difference between interfering momentum states. We show that
the level of asymmetry is related to the amount of spontaneous
emission occurring during sw excitations, as well as stimulated
processes such as Rabi flopping.

The analytical model of the AI accounts for effects due to
both magnetic sublevels and spontaneous emission. By includ-
ing these effects, we avoid the need for a phenomenological
model that was previously used in measurements of the atomic
recoil frequency [16]. Using this theoretical treatment, we are
also able to estimate magnetic sublevel populations in the
experiment.

Although the analytical model provides an improved un-
derstanding of the response of the AI, the model is still limited
to short pulses such that the motion of the atom during the
interaction can be ignored (Raman-Nath regime). Additionally,
the model is limited to detunings (�) large compared to the
Rabi frequency (|�| � �0) and the spontaneous emission rate
(|�| � �). The analytical calculation also assumes that the

excited state adiabatically follows the ground state, eliminating
any dynamic exchange of amplitude or phase between states.
The decay of the excited state due to spontaneous emission
is also accomplished in an approximate manner, since the
ground-state amplitude is not repopulated by the excited state.
As a result of these limitations, the theory fails to model
experimental data accurately in several regimes of interest.

Since the simulation numerically solves the equations
governing the system, none of the aforementioned limitations
apply. The simulation accounts for the motion of atoms and
the dynamic evolution of magnetic sublevel populations during
the interaction with sw pulses, which is not a feature of the
analytical calculation. In general, this approach allows for a
much broader class of phenomena to be studied. Additionally,
a precision measurement of the recoil frequency using this
technique would involve a detailed study of systematic effects.
This justifies the need for an accurate and robust model for the
signal.

The rest of the article is organized as follows. Section II
gives a brief description of the experiment. Section III reviews
the main results pertaining to a theoretical calculation of
the signal in two temperature regimes, one reminiscent of
Bose-Einstein condensate (BEC) conditions involving one sw
pulse and the other similar to conditions in a magneto-optical
trap (MOT) involving two sw pulses. A detailed description
of the calculation of the one-pulse recoil signal is given in the
Appendix. In Sec. III, we also derive an expression for the
signal that accounts for magnetic sublevels, which is used
to model experimental data. In Sec. IV, we describe the
theoretical background for the simulations. A discussion of
the main results of this work follows in Sec. V. We present
our conclusions in Sec. VI and discuss future directions and
applications of this work.

II. DESCRIPTION OF EXPERIMENT

The AI is used to measure the two-photon atomic recoil
frequency ωq = h̄q2/2M . Here, M is the mass of the atom
and h̄q = 2h̄k is the momentum transferred to the atom from
counterpropagating laser fields with wavelength λ and wave
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FIG. 1. (Color online) Recoil diagram for a time-domain atom in-
terferometer. Center-of-mass momentum states are shown as red dots.
The first sw pulse, applied at t = 0, diffracts the momentum states
of the atom into multiples of the two-photon recoil momentum 2h̄k.
The second sw pulse, applied at t = T , splits the momentum states
further. Only the zeroth-order and ±first-order diffractions from each
sw pulse are drawn for simplicity. In the vicinity of the echo time,
t = 2T , there is interference between all orders of momentum states.
Our detection scheme is only sensitive to interferences between states
that differ by 2h̄k. Two pairs of interfering momentum states are
shown as solid black lines.

number k = 2π/λ. A sw laser pulse with off-resonant traveling
wave components interacts with a sample of laser-cooled
85Rb atoms (temperature T ∼ 100 µK) at times t = 0 and
t = T . During each pulse, atoms complete several two-photon
transitions corresponding to the absorption of a photon from
one traveling wave component and stimulated emission into
the oppositely directed traveling wave. This results in the
diffraction of atoms into a superposition of momentum states
separated by h̄q, as shown in Fig. 1.

In the absence of spontaneous processes, and assuming
both traveling wave components of the sw have the same
polarization, the interaction returns the atoms to the same
ground-state magnetic sublevel. The atomic wave function de-
velops a phase modulation on a time scale τq = π/ωq ∼ 32 µs,
where τq is referred to as the recoil period. This phase
modulation evolves into a spatial and temporal modulation
in the atomic density. Due to the finite velocity distribution of
the atomic sample, the density grating dephases on a time
scale defined by the coherence time tcoh ∼ 2/qσv ∼ 1 µs.
Here, σv ∼ 10 cm/s is the width of the velocity distribution.
Since tcoh � τq for the conditions of our experiment, an echo
technique is used to cancel the effect of Doppler dephasing
and measure the temporal modulation induced on the density
distribution due to atomic recoil. A second sw pulse, applied at
t = T , causes interference of momentum states in the vicinity
of the echo time, t = 2T , resulting in a rephasing of the
density grating, as shown in Fig. 2. The grating contrast is
measured by applying a traveling wave readout pulse (with
the same wavelength as the sw pulses) and detecting the
intensity of the coherently backscattered light from the atomic
cloud. The density grating has various spatial harmonics
in integer multiples of q due to the different orders of

FIG. 2. (Color online) Pulse-timing diagram for the experiment.
After each sw pulse, a modulation in atom density forms and then
decays in a time tcoh ∼ 2/qσv due to Doppler dephasing. At time
t = 2T , the grating echo forms as a result of the interference between
different momentum states. A traveling wave readout pulse coherently
backscatters light from the grating at this time. The intensity of this
light is detected by a photomultiplier tube.

interfering momentum states. However, due to the nature of
Bragg diffraction, this detection technique is only sensitive to
density modulation that has a spatial periodicity of λ/2 (spatial
harmonic q)—the smallest grating spacing that can Bragg
scatter light of wavelength λ. Only interfering momentum
states that differ by h̄q can produce such a modulation. The
integrated intensity of backscattered light (referred to as the
echo intensity) is proportional to the contrast of the density
grating. The echo intensity is a periodic function of the pulse
separation, T , with period τq .

The experiment utilizes 85Rb atoms cooled in a MOT
contained within a glass vacuum system. The trap loads ∼109

atoms in ∼300 ms. Both the MOT laser beams and the
magnetic field gradient are switched off prior to the AI ex-
periment. The MOT B-field gradient is turned off in ∼100 µs,
after which the atoms are cooled in an optical molasses for
several milliseconds. Three pairs of coils, one pair along
each direction, are used to cancel residual magnetic fields and
magnetic-field gradients. These coils remain on continuously.
Under these conditions, the magnetic field at the time of the
echo experiment is canceled at the level of 1 mG over the
volume of the trap. The AI excitation pulses are derived from
two off-resonant, circularly polarized, traveling wave beams.
They are overlapped at the location of the trap to form a sw
along the vertical direction. The AI beams have a Gaussian
intensity profile and are collimated to a diameter of ∼2 cm.
All excitation pulses are produced by using digital delay
generators to trigger acousto-optic switches. The backscattered
light intensity from the grating is detected using a gated
photomultiplier tube. Measurements of ωq are accomplished
by measuring the contrast of the grating as a function of the
pulse separation, T , on a suitably long time scale. A more
detailed description of the experiment is given in Ref. [15].
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III. THEORY

The theoretical expression for the recoil signal was origi-
nally derived in Ref. [4]. The influence of magnetic sublevels
was subsequently included for studies of nanostructures in
cold atoms [14]. The treatment in Ref. [16] addressed the role
of spontaneous emission on the recoil signal. In this work, we
include both effects to develop a complete understanding of
the properties of the recoil signal. Since theoretical derivations
of this signal have been studied previously, we present the
details in the Appendix. Here, we review the main results
required to understand the recoil signal in the one-pulse regime
(appropriate for BEC conditions) and the two-pulse regime
(used for experiments under MOT conditions). These results
are used as a foundation for developing numerical techniques
and for testing the accuracy of simulations.

A. One-pulse recoil signal

The one-pulse regime assumes the velocity distribution of
the sample is infinitely narrow. The calculation is carried out
in three stages. In the first stage, the Schrödinger equation
is solved for the ground-state amplitude of the atomic wave
function, ag , using the two-level Hamiltonian for a sw laser
pulse of duration τ1. The Hamiltonian assumes that the sw
pulse is short (Raman-Nath regime) such that the motion of
the atoms along the axis of the sw can be neglected during the
interaction. This allows us to ignore the kinetic energy term in
the Hamiltonian during the sw pulse. It also assumes that the
pulse is far off-resonance (|�| � �0,γ ) such that the excited
state is not significantly populated. Here, � ≡ ω − ω0 is the
detuning of the laser frequency, ω, from the atomic resonance
frequency, ω0, �0 ≡ µegE0/h̄ is the Rabi frequency, µeg is
a dipole matrix element, E0 is the electric-field amplitude of
each traveling wave component of the sw, and γ = �/2, where
� is the spontaneous emission rate.

In the second stage of the calculation, after the pulse has
turned off, the atom is allowed to evolve in free space for a
time t , which results in a modification of the phase of the
ground-state amplitude. In an experiment involving a BEC, a
traveling wave readout pulse with wavelength λ can be applied
to the atomic sample and the intensity of the backscattered
electric field can be detected as the signal. The amplitude
of the backscattered electric field is proportional to the
λ/2-periodic component of the atomic density modulation (the
2k = q Fourier harmonic) produced by the sw interaction.

The final stage of the calculation requires a computation of
the probability density of the ground state, ρg(r,t). The recoil
signal is obtained by evaluating the square of the q Fourier
harmonic of this probability density.

The Hamiltonian in the field-interaction representation [19]
for a two-level atom is

H̃ = h̄

(−� − iγ �(r)
�(r) 0

)
, (1)

where �(r) = �0 cos(k · r) for a sw laser field. The energy is
defined to be zero for the ground state and −h̄� for the excited
state. The −ih̄γ term is a phenomenological constant added
to account for spontaneous emission during the interaction,
which gives rise to amplitude decay of the excited state. This
approach is valid in any open two-level system, but only

approximately accounts for spontaneous emission in a closed
system since the excited state population is not fed into the
ground state (normalization is not preserved). In addition, this
Hamiltonian does not account for the atomic recoil due to the
photon emission. By using the density matrix approach [20]
or resorting to Monte-Carlo wave function techniques [21], a
more complete model of spontaneous emission can be realized.

As shown in the Appendix, the amplitude of the backscat-
tered electric field as a function of the time, t , after the
sw pulse is

Ẽ1(t) ∝ −u1 sin(ωqt − θ )[J0(κ1) + J2(κ1)], (2)

where u1 is the magnitude of the sw pulse area [Eq. (A4)], ωq

is the two-photon recoil frequency, θ is a parameter associated
with spontaneous emission given by

θ = tan−1

(
− �

2�

)
, (3)

Jν(x) is the νth-order Bessel function of the first kind, and κ1

is given by Eq. (A13). From Eq. (2) it is clear that the field
amplitude is proportional to u1 in the small-pulse-area regime
and is shifted by a phase θ due to spontaneous emission. This
has interesting consequences for the signal shape and will be
discussed in detail in Sec. V B1.

For sufficiently cold atomic samples (∼10 nK), tcoh � τq

and Doppler dephasing is negligible, thereby allowing the
temporal modulation in the contrast to be resolved after a single
sw pulse [6]. The ground-state density after the interaction
with the sw pulse [Eq. (A10)] is shown in Figs. 3(a) and 3(b)
for low- and high-pulse areas, respectively, in the absence

FIG. 3. Density distribution, ρg(z,t), and corresponding
backscattered electric field amplitude, Ẽ1(t), for an atomic sample
after the interaction with a weak sw pulse (a,c) and a strong sw
pulse (b,d). In plots (a) and (b), z is the distance along the sw
field. Dark portions correspond to low density while light portions
correspond to high density. ρg(z,t) shows spatial modulation that is
periodic at integer multiples of λ/2 and shows temporal modulation
at integer multiples of twice the recoil frequency, 2ωq , as the pulse
area increases. Equation (A10) was used to produce plots (a) and
(b) with first pulse area u1 = 0.5 and 1.5, respectively. In plots (c)
and (d), Eq. (2) was used with the same respective pulse areas. The
zeros in the contrast of the density modulation correspond to the
zeros in Ẽ1(t). The effects of spontaneous emission were ignored for
all plots.
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of spontaneous emission (θ = 0). For small-pulse areas, the
density is sinusoidally modulated in space with a period
λ/2. The contrast of this spatial modulation oscillates in
time with a period τq , as shown in Fig. 3(a). This density
distribution corresponds to the momentum state | p = 0〉
interfering with the | p = ±h̄q〉 states. For higher-pulse areas,
the density distribution becomes more complicated [as shown
in Fig. 3(a)] due to the presence of additional spatial harmonics
from the interference of higher-order momentum states. The
temporal modulation of the contrast also exhibits higher-order
harmonics but still primarily oscillates at the fundamental
frequency 2ωq .

The amplitude of the backscattered field, Ẽ1(t) [Eq. (2)],
derived from the ground-state density ρg(z,t) given by
Eq. (A10), is shown in Figs. 3(c) and 3(d) for the same pulse
areas. The field changes with time due to the oscillations in
the contrast of the density distribution. For small u1, only
the lowest-order momentum states contribute to the signal,
and Ẽ1(t) oscillates sinusoidally at frequency ωq . In general,
the states |nh̄q〉 and |(n + 1)h̄q〉 interfere to produce a λ/2
spatial modulation with a contrast that oscillates in time with
a frequency 2(2n + 1)ωq . For higher-pulse areas, additional
harmonics in the density distribution give rise to the shape of
the backscattered field shown in Fig. 3(d). Equation (2) takes
into account the interference of any two p states differing
by h̄q in momentum, but no higher-order interferences—for
example, between |nh̄q〉 and |(n + 2)h̄q〉.

The analytical expression for the one-pulse recoil signal,
denoted by s̃1, is simply the intensity of the backscattered field:
s̃1(t) ∝ |Ẽ1(t)|2. This quantity is proportional to the contrast
of the density modulation.

B. Two-pulse recoil signal

The theoretical expression of the recoil signal in the
two-pulse regime is a simple extension of that in the one-pulse
regime. Typically, the two-pulse experiment is carried out
under MOT conditions where Doppler dephasing becomes
important because the velocity distribution of the atoms can
no longer be approximated by a δ function.

As shown in the Appendix, the sw interaction is equivalent
to a phase grating in diffractive optics. The calculation for the
two-pulse recoil signal involves applying an additional phase
grating ei�2 cos(q·r), associated with the second sw pulse, to
the atomic wave function a time t = T after the first pulse
[shown in Eq. (A9)]. The atom evolves in free space after
the second pulse until a time t

(N)
echo = (N + 1)T , called the

N th-order echo time, where the Doppler phases from all
velocity classes cancel. Here, N = η/ζ , where η is the
momentum difference between interfering p states from the
first pulse (in units of h̄q) and ζ is the equivalent quantity for
the second pulse. When averaged over the velocity distribution,
the atomic density shows modulation with a nonzero contrast
only in the vicinity of these echo times. At all other times,
the density is uniform since the modulation has been washed
out by Doppler dephasing. In the general case, N is a rational
number [14,19], but in our case we consider only the first-order
echo which occurs at time t

(1)
echo = 2T , corresponding to N = 1.

The density of the atomic sample after the two sw pulses and
at the first-order echo time is depicted in Fig. 2.

The amplitude of the backscattered electric field about t =
2T can be shown to be

〈Ẽ2(�t,T )〉 ∝ Ẽ1(�t)e−(�t/tcoh)2 u2
2

2
sin2[ωq(T + �t) − θ ]

×
[
J0(κ2) + 4

3
J2(κ2) + 1

3
J4(κ2)

]
, (4)

where T is the separation between sw pulses, �t = t − 2T is
the time relative to the echo time, u2 is the magnitude of the
second pulse area, and

κ2 ≡ 2u2

√
sin[ωq(T + �t) − θ ] sin[ωq(T + �t) + θ ]. (5)

The 〈· · ·〉 brackets in Eq. (4) indicate that the backscattered
field has been averaged over the initial velocity distribution,
which is assumed to be Maxwellian with a characteristic width
σv = √

2kBT /M , which is also equal to the most probable
speed. The coherence time, tcoh = 2/qσv , is the time about the
echo time for which the backscattered field is nonzero and is
determined solely by σv .

From Eq. (4), which is equivalent to Eq. (25) in Ref. [16],
it is clear that for small u2 the basic signal dependence on
pulse separation, T , is a sinusoidal oscillation at frequency
ωq that is phase shifted by an amount θ [Eq. (3)]. This phase
shift is associated with spontaneous emission. As the second
pulse area becomes large, the third factor in Eq. (4) has a more
significant contribution to the signal. This is associated with
the interference of higher-order momentum states, as discussed
in Sec. III A.

The two-pulse recoil signal is the integrated intensity of
the backscattered light in the vicinity of the echo time. The
�t-integrated intensity is approximately proportional to the
square of the T -dependent part of Ẽ2 from Eq. (4):

s̃2(T ) ∼ u4
2

4
sin4[ωq(T + �t) − θ ]

×
[
J0(κ2) + 4

3
J2(κ2) + 1

3
J4(κ2)

]2

. (6)

As a function T , this expression is periodic with fundamental
frequency 2ωq (period τq = π/ωq ∼ 32 µs). The signal,
s̃2, is proportional to the grating contrast measured in the
experiment, which is a manifestation of phase modulation in
the atomic wave function following the interaction with two sw
pulses. The response of the AI depends on the level structure of
the atom and the coupling between these levels and the driving
field. We now explore these effects in detail.

C. Recoil signal including magnetic sublevels

So far, we have reviewed the theoretical expressions for
the one- and two-pulse recoil signals, including the effects of
spontaneous emission, for a two-level atom. In the experiment
we use 85Rb, which is a multilevel atom. If only the
F = 3 → F ′ = 4 transition is considered, there are 2F +
1 = 7 ground-state magnetic sublevels and 9 excited-state
sublevels. These energetically degenerate sublevels play a
significant role in the response of the AI. A previous treatment
of the two-pulse signal [14] accounted for multiple atomic
levels but assumed the population was equally distributed
and ignored effects due to spontaneous emission. Here we
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extend the theoretical model of the recoil signal discussed in
the previous two subsections to include multilevel atoms with
an arbitrary distribution of initial sublevel populations.

The coupling strength between states |g〉 = |ngJgmg〉 and
|e〉 = |neJeme〉 is determined by the dipole matrix element

µeg = −e 〈e| ε̂qL
· r |g〉 = −e〈neJe‖r‖ngJg〉CJg 1 Je

mg qL me
, (7)

where ng , ne are the principal quantum numbers, Jg , Je are
the total angular momenta, and mg , me are the magnetic
sublevels of the ground and excited states, respectively. In
our case, Jg = F = 3 and Je = F ′ = 4. The unit vector ε̂qL

represents the polarization of the laser field. Linear and circular
polarization states are denoted by qL (qL = 0 for linear and
qL = ±1 for σ± polarizations). The factor 〈neJe‖r‖ngJg〉 in
Eq. (7) is the reduced matrix element associated with the
radial part of the wave functions—the magnitude of which
is unimportant for this treatment and will be absorbed into
the Rabi frequency, �0 = µegE0/h̄. The factor C

Jg 1 Je

mg qL me
is the

Clebsch-Gordan coefficient, which describes how strongly two
states are coupled by the photon and depends on the particular
transition. Since we are only concerned with electric dipole
transitions, it is nonzero only for states that obey the selection
rules: Je = Jg + 1 and me = mg + qL.

From Eq. (7), it is apparent that each degenerate m level
interacts with a sw pulse (of a given polarization) with a
different coupling strength—which is proportional to the Rabi
frequency for each transition: C

Jg 1 Je

mg qL me
�0. In the experiment,

this differential coupling causes the population of the m levels
to become unbalanced after the interaction with the sw pulse
(optical pumping). The degree of the imbalance is determined
by �0, �, and the pulse durations. In the analytical treatment
that follows, optical pumping is not taken into account. We
assume the population of each m level remains constant
during the sw pulses. However, the numerical simulation to
be discussed in Sec. IV includes optical pumping effects.

The area of a given sw pulse, denoted by index j = 1 or 2,
is given by

u
(mg )
j = �2

0τj

2�

[
1 +

(
�

2�

)2
]−1/2 (

C
Jg 1 Je

mg qL me

)2
, (8)

where τj is the pulse duration. For the one-pulse and two-pulse
signals, the backscattered field amplitude from the state |Jgmg〉
is

Ẽ
(mg )
1 (t) ∝ u

(mg)
1

(
C

Jg 1 Je

mg qL me

)2

× sin(ωqt − θ ) [J0 (κ1) + J2 (κ1)] , (9a)

〈Ẽ(mg )
2 (T )〉 ∝ 1

2

(
u

(mg )
2

)2 (
C

Jg 1 Je

mg qL me

)2

× sin2[ωq(T + �t) − θ ]

× [
J0(κ2) + 4

3J2(κ2) + 1
3J4(κ2)

]
. (9b)

Here it is understood that u1 in Eq. (A13) for κ1 (for a two-
level atom) has been replaced by u

(mg )
1 for the multilevel case.

Similarly, u2 in Eq. (5) for κ2 has been replaced by u
(mg )
2 . The

extra factor of (C
Jg 1 Je

mg qL me
)2 in Eqs. (9) arises due to the coupling

of states |Jgmg〉 and |Jeme〉 by the traveling wave readout pulse
(assuming that the scattered field has the same polarization as

FIG. 4. Comparison of two-pulse recoil curves predicted by the
two-level theory [Eq. (6), gray curve] and the theory including
magnetic sublevels [square of Eq. (10b), black curve] for various
second-pulse durations, τ2 (a, 150 ns; b, 200 ns; c, 250 ns; d, 300 ns).
Here the m-level populations were assumed to be equally distributed
among the seven levels of the Jg = 3 ground state. Pulse parameters:
� = 10�N, �0 = 2.5�N, � = �N.

the readout pulse). The total scattered field from the atom is
proportional to the sum of the fields scattered by each m level
weighted by the final population of that level, �Jgmg

:

Ẽ1(t) ∝
∑
mg

�Jgmg
Ẽ

(mg )
1 (t) (10a)

〈Ẽ2(T )〉 ∝
∑
mg

�Jgmg

〈
Ẽ

(mg )
2 (T )

〉
. (10b)

The one- and two-pulse recoil signals are proportional to
the square of the total backscattered field amplitudes given
by Eqs. (10) (s̃j ∝ |Ẽj |2, for index j = 1,2). The form of
Eqs. (10) allows for interference between scattered fields from
each m level. This additional interference from magnetic sub-
levels strongly affects the shape of the recoil signal. Figure 4
shows a comparison of two-pulse recoil signals predicted by
the two-level theory [Eq. (6)] and the theory including multiple
sublevels [square of Eq. (10b)] for various second-pulse
durations, τ2. The two-level theory predicts extra zeros in
the signal shape that are not observed experimentally. For the
same set of pulse parameters, the multilevel theory does not
predict these extra zeros due to the interference of backscat-
tered light from each magnetic sublevel. The multilevel theory
models experimental data much more effectively than all
previous models, as we show in Sec. V A.

IV. DESCRIPTION OF SIMULATION

The main goal of the simulation is to compute the two-pulse
recoil signal (scattered field intensity as a function of pulse
separation, T ) under the conditions of the experiment. In
practice, the signal in the experiment is obtained from a
macroscopic sample (typically ∼109 atoms) at a temperature
of T ∼ 100 µK. The most basic assumption of the simulation
is that the signal from the AI can, in principle, be produced
by a single atom. Instead of velocity averaging over many
atoms with a well-defined momentum, as in the theoretical
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calculation of the two-pulse recoil signal, the simulation solves
for the time evolution of a single atom (represented by a
wave packet in momentum space) with a Maxwell-Boltzmann
probability distribution of velocities corresponding to a given
temperature.

The theoretical framework of the simulation uses the
Schrödinger picture to account for a number of physical
effects, such as the motion of the atom at all times during
the evolution; the bandwidth of sw pulses; Doppler shifts of
momentum states; momentum-state excitation for arbitrary
sw pulse duration, field strength, and detuning; population
and coherence transfer between ground and excited states;
population dissipation due to spontaneous emission; and
optical pumping of magnetic sublevels.

We solve for the time-dependent state amplitudes of the
atomic wave function. The computational cost of this problem
scales as Np multiplied by the number of time steps used,
where Np is the number of discrete momentum states. This
is much less computationally expensive than the Heisenberg
approach, where an Np × Np density matrix must be computed
at every time step. However, the Heisenberg approach allows
for a much broader class of problems to be addressed, such
as the atomic recoil due to spontaneous emission [19] or
N -atom effects such as collective excitation and emission of
radiation. Similarly, a Monte-Carlo wave function (MCWF)
approach in the Schrödinger picture would allow for a
more complete model of spontaneous emission [21,22] with
additional computational cost. In other work [15], we carried
out MCWF simulations of sw pulses to study the excitation of
momentum states and their relative populations for comparison
with an experiment. In the case of the two-pulse recoil
experiment, we found that the random photon recoil due to
spontaneous emission has a negligible effect on the signal
shape compared to the excited-state population damping
associated with spontaneous emission. As a result, the photon
recoil associated with spontaneous emission is not taken into
account in the treatment presented here.

We now review the theoretical framework of the simulation.
We restrict our model to atoms with two manifolds of
energetically degenerate magnetic sublevels and total ground
(excited)-state angular momentum Jg (Je = Jg + 1). We label
the states of the atom as |Jg mg〉 and |Je me〉. The Schrödinger
equation is solved numerically in momentum space for wave
functions in the field-interaction representation under the
influence of an off-resonant, time-dependent sw potential.
The Hamiltonian for this system in the rotating wave and
dipole approximations is [19]

H = P̂ 2
z

2M
+ h̄

2

(
� − kPz

M

) (
ŜJg

− ŜJe

) + h̄�(t)

2

× (|p − h̄k〉〈p| + |p + h̄k〉〈p|)(Ŝ+
qL

+ Ŝ−
qL

). (11)

Here P̂z is the momentum operator along the z axis, � ≡
ω − ω0 is the detuning of the laser field from resonance, ŜJg

=
|Jg〉〈Jg| (ŜJe

= |Je〉〈Je|) is the ground (excited)-state projec-
tion operator, �(t) = µE0E(t)/h̄ is the (time-dependent) Rabi
frequency with envelope function E(t), |p ± h̄k〉〈p| are raising
and lowering operators for the momentum state |p〉 in units of
the photon momentum, and Ŝ+

qL
(Ŝ−

qL
) is a raising (lowering)

operator proportional to the atomic dipole operator for laser

field polarization state qL. These operators are defined as
follows:

Ŝ+
qL

|Jg mg〉 = C
Jg 1 Je

mg qL mg+qL
|Je mg + qL〉, (12a)

Ŝ−
qL

|Je me〉 = C
Je 1 Jg

me qL me−qL
|Jg me − qL〉, (12b)

Ŝ+
qL

|Je me〉 = Ŝ−
qL

|Jg mg〉 = 0. (12c)

Clebsch-Gordan coefficients, C
j1 j2 J

m1 m2 M , describe the cou-
pling of different ground- and excited-state m levels. The pulse
envelope, E(t), is based on a sum of exponential functions of
the form 1/(1 + e−x), where x = (t − t0)/τrise for the rising
edge of the pulse at time t = t0, x = −(t − t1)/τrise for the
falling edge at t = t1, and τrise is the rise time. Typically, the
rise time is set equal to the experimentally measured value of
20 ns. The duration of the pulse is defined as τ = t1 − t0.

The total momentum space wave function, �(p,t), can be
written as a linear combination of the 2Jg + 1 ground states
|Jg mg〉 and the 2Je + 1 excited states |Je me〉,
�(p,t) =

∑
mg

αJgmg
(p,t)|Jg mg〉 +

∑
me

βJeme
(p,t)|Je me〉,

(13)

where αJgmg
and βJeme

are the corresponding state amplitudes.
The main goal of the simulation is to find the state ampli-

tudes that simultaneously satisfy the Schrödinger equation and
the set of rate equations that describe spontaneous emission.
The solution to the Schrödinger equation is computed using a
combination of two methods. When the interaction potential
is turned off [i.e., E(t) = 0] and the excited state population
(�Je

(t)) is zero, an analytical solution of the Schrödinger
equation in free space is used to compute �(p,t). At all
other times, the solution is computed using a fourth-order
Runge-Kutta routine [23]. To describe spontaneous transitions
from the excited to ground levels, the numerical solver also
simultaneously satisfies the following rate equations for the
m-level populations:

�̇Jeme
= −��Jeme

, (14a)

�̇Jgmg
=

∑
qL

(
C

Jg 1 Je

mg qL mg+qL

)2
��Jemg+qL

. (14b)

These equations have a solution:

�Jeme
(t ′) = �Jeme

(t)e−�(t ′−t), (15a)

�Jgmg
(t ′) = �Jgmg

(t) + (1 − e−�(t ′−t))

×
∑
qL

(
C

Jg 1 Je

mg qL mg+qL

)2
�Jemg+qL

(t). (15b)

Typically, � = �N = 3.76 × 107 s−1, which is the natural
radiative rate of the 52P3/2 excited state for 85Rb [24].

Figure 5 shows the evolution of m-level populations in
the ground level during a sw pulse for (a) circular and
(b) linear polarizations. Here, the initial populations are
equally distributed among the seven sublevels. Evidence of
optical pumping is clearly visible after only τ1 ∼ 300 ns, which
is the typical duration of sw pulses in the experiment.

The initial ground-state population, �Jg
(0), is set to unity

and the code ensures that the normalization of the wave
function is preserved for all times thereafter. The population
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FIG. 5. (Color online) Evolution of ground-state magnetic sub-
level populations during a sw pulse for (a) σ+ and (b) linear
polarization states. The vertical gray grid lines in each plot indicate
where the sw pulse turns on and off. For circular polarization there is
optical pumping toward the mg = 3 level, while for linear polarization
the population is pumped toward the mg = 0 level. Pulse parameters:
τ1 = 300 ns, τrise = 20 ns, � = 8.36�N, �0 = 5�N, � = �N.

of a particular manifold at any time, �J (t), is the sum
over all m-level populations, �Jm(t), in that manifold and is
related to the state amplitude, αJm(p,t), through the following
expressions:

�Jg
(t) =

∑
mg

�Jgmg
(t) = 1 − �Je

(t), (16a)

�Jgmg
(t) =

∫ ∣∣αJgmg
(p,t)

∣∣2
dp. (16b)

To account for the finite velocity distribution of the laser-
cooled sample, we use a Gaussian wave packet to describe the
initial momentum distribution of each magnetic sublevel. The
initial wave function can be written as

�(p,0) =
∑
mg

αJgmg
(p,0)|Jg mg〉, (17a)

αJgmg
(p,0) = αJgmg

(0)

[
e−(p−p0)2/2σ 2

p

√
2πσp

]1/2

. (17b)

Here, p0 is the average initial momentum, σp = h̄/� is the
standard deviation of the p-space probability distribution, and
� = h/(2πMkBT )1/2 is the thermal de Broglie wavelength.
The coefficients αJgmg

(0) are free parameters that define the
initial population of each ground-state m level.

For the one-pulse recoil signal, the backscattered field from
each m level is computed using the amplitude of the q Fourier
harmonic from each ground-state amplitude, as given by

E
(mg )
1 (t) ∝

(
C

Jg 1 Je

mg qL me

)2
∫

α∗
Jgmg

(p,t)αJgmg
(p − h̄q,t) dp.

(18)

This expression is analogous to Eq. (9a) in the analytical
model. The total backscattered field is a sum over the scattered
fields from each m level:

E1(t) =
∑
mg

E
(mg )
1 (t). (19)

No m-level population factors appear in Eq. (19), as they do in
the analytical equivalent [Eq. (10a)], because the populations
are intrinsically built into the state amplitudes, αJgmg

, that
appear in Eq. (18). The one-pulse recoil signal is then s1(t) =
|E1(t)|2, where t is the time after the sw pulse. From Eq. (19),
it is evident that the shape of the recoil signal depends on the
distribution of initial ground-state amplitudes, αJgmg

(0).
In the two-pulse regime we use a temperature of ∼50 µK,

which is 5000 times larger than that used in the one-pulse
regime, but a factor of ∼2 smaller than the typical temperature
in the experiment. This is done to reduce the computation
time in the two-pulse regime. We use a similar method to
compute the intensity of the backscattered field as in the
two-pulse experiment. In the vicinity of the grating echo the
intensity is |E1(2T + t ′)|2, where t ′ is the time relative to
t = 2T and E1 is given by Eq. (19). Therefore, we calculate
the two-pulse recoil signal by integrating this quantity over t ′,
as given by

s2(T ) =
∫

|E1(2T + t ′)|2dt ′. (20)

This quantity is analogous to the expression for the two-pulse
recoil signal for a two-level system [Eq. (6)] or for an m-level
system [square of Eq. (10b)].

To conclude the description of the simulations, we discuss
the discretization of momentum space. In the two-pulse
regime, the width of the wave function is σp ∼ 5h̄k. The
discretization size is then typically set to �p ∼ σp/250 ∼
h̄k/50 for good p-space resolution. However, due to the
reduced temperature in the one-pulse regime, the width of the
wave function is much smaller (σp ∼ 0.01h̄k—much less than
the h̄k transferred by absorption or emission along z). Hence,
we can use �p = h̄k since this is the smallest momentum
transfer allowed by the sw interaction.

The number of sw pulses and the p-space discretization size
has a large effect on the computational cost of the simulation
in the two regimes. Since the two-pulse regime requires an
additional sw pulse, a smaller �p, and the evaluation of
the signal is carried out as a function of T , it is much
more computationally demanding than the one-pulse regime.
Typically, the computation time is ∼12 h for the two-pulse
regime and ∼30 s for the one-pulse regime on a computing
network using 2.2-GHz processors (SHARCNET). However,
the underlying physics in both regimes is essentially the same
and many features of the two-pulse recoil signal can be studied
using one-pulse simulations.
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V. RESULTS AND DISCUSSION

Here we discuss the two main results of this work: the
effects on the recoil signal due to magnetic sublevels and the
momentum-dependent phase imprinted on the ground state
by spontaneous and stimulated processes. We also present a
detailed description of the mechanisms that contribute to the
shape of the signal.

A. Effects due to magnetic sublevels

Figure 6 shows data from the two-pulse recoil experiment
for various second sw pulse durations, τ2. The echo intensity
was recorded as a function of the pulse separation, T , for
circularly polarized sw pulses (|qL| = 1). Particular values
of τ2 (70, 86, and 98 ns) were chosen to illustrate a range
of signal shapes typically observed in the experiment. Two
separate fits to the data are shown, one based on the two-level
model [Eq. (6)] and the other on the multilevel model [square
of Eq. (10b)]. The two-level theory is insufficient for accurately
modeling experimental data, whereas the multilevel theory fits
all aspects of the signal for a large range of shapes. In particular,
the multilevel theory successfully models the asymmetry and
the broad valleys between zeros of the signal that occur as the
area of the second pulse is increased, as shown in Fig. 6. Fits
using the multilevel theory show a factor of ∼10 improvement
in the χ2/(degrees of freedom) compared to that of the two-
level theory, which corresponds to a factor of ∼3 improvement
in the relative uncertainty of the recoil frequency. Thus, the
multilevel model is ideally suited for precision measurements
of ωq using this technique.

The development of this multilevel model—which con-
tains only measurable parameters—represents a significant
improvement in our understanding of the AI since previous
efforts [16] relied upon a phenomenological model to fit
experimental data. This model was unable to explain the
underlying physical mechanisms that govern the signal shape.
Additionally, the present model is far more successful in fitting
the full range of signal shapes that can be generated in the
experiment compared to the phenomenological model.

Another complication in modeling the AI is that magnetic
sublevels and the spatial intensity profile of the excitation
beams can be shown to produce similar effects on the signal
shape. In this work, the beam diameter (∼2 cm) was larger
than the diameter of the atomic cloud (∼1 cm). Therefore, we
were able to demonstrate conclusively that magnetic sublevels
played the dominant role in the response of the AI.

The data shown in Fig. 6 validate the multilevel model
developed in Sec. III C. A distribution of populations among
several ground-state magnetic sublevels smears out any extra
zeros in the signal that would occur if the system were optically
pumped into a single state, for example |JgJg〉. This smearing
is due to interference between the coherently scattered light
from each m level. Additionally, the valleys between the zeros
in the signal are significantly broadened. These effects are
most prominent when the pulse areas (u1 and u2) are large,
since (i) higher-order momentum states are contributing to
the signal from each m level (resulting in the double-peaked
shape) and (ii) population imbalance in the m levels is
maximized.

FIG. 6. (Color online) Data from the two-pulse recoil experiment
for different second-pulse durations, τ2 (a, 70 ns; b, 86 ns; c, 98 ns).
Data is fit to the two-level expression [Eq. (6)] shown as the
blue dashed line, resulting in a χ 2/dof ∼ 9 × 10−3, where dof is
the number of degrees of freedom. The data is also fit to the
multilevel expression [square of Eq. (10b)] shown as the red solid
line, resulting in χ 2/dof ∼ 8 × 10−4. The χ 2 is computed assuming
equally weighted data points (uncertainty for each point equal to
unity). Final m-level populations, �Jgmg

, were estimated from the
multilevel fits and are tabulated in Table I. Pulse parameters: detuning
� ∼ 50 MHz, intensity I ∼ 50 mW/cm2, polarization state |qL| = 1,
first-pulse duration τ1 = 300 ns.

It is also possible to estimate the final m-level populations,
�Jgmg

, from the multilevel fits to the data in Fig. 6. Although
we found the statistical errors in the populations from the fits
to be relatively large, the estimates are considered accurate
for two reasons. First, a variation between the �Jgmg

on the
order of ∼10% results in a deviation in the minimum of
the χ2. Second, the distribution of populations is similar
to those inferred from simulations. We attribute the large
statistical errors to the presence of 12 free parameters in the fit
function [based on the square of Eq. (10a)], namely, u2, θ , �t ,
ωq , an amplitude factor A, and the seven populations, �Jgmg

.
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TABLE I. Final m-level population estimates from multilevel fits
to experimental data for various second-pulse durations, as shown in
Fig. 6. The fits were performed assuming qL = 1.

τ2 (ns) �3−3 �3−2 �3−1 �30 �31 �32 �33

70 0.00 0.03 0.32 0.48 0.15 0.02 0.00
86 0.00 0.03 0.38 0.32 0.21 0.05 0.01
98 0.00 0.00 0.50 0.32 0.15 0.02 0.01

From Table I, the general trend in the final populations is to
move toward the mg > 0 levels as the pulse duration increases.
This is consistent with our expectations for σ+ excitation
pulses. Magnetic sublevel populations can be confirmed using
independent techniques [25].

Figure 7 shows data from the two-pulse recoil experiment
obtained using circularly polarized beams and separately
for linearly polarized beams. This data provides alternate
confirmation of the role of magnetic sublevels. The recoil
curves for each polarization state are qualitatively different
for various second-pulse durations. This figure also shows
simulations that qualitatively agree with the data.

The signal shapes shown in Fig. 7 for each polarization are
consistent with our expectations based on two considerations.
First, the backscattered field amplitude from each m level is
proportional to (C

Jg 1 Je

mg qL me
)2�Jgmg

. For the same distribution
of m-level populations at the time of the echo, the two
polarizations of the readout pulse induce different atomic
responses and therefore produce distinct signal shapes for
the two cases. Second, the atom-field couplings are larger
toward the mg = Jg state for the qL = 1 polarization state
(C3 1 4

3 1 4 = 1) compared to the couplings for the mg = 0 state

FIG. 7. Data from the two-pulse recoil experiment (a,c) and
corresponding simulations (b,d) for two laser polarization states
(gray, qL = 0; black, |qL| = 1) and two second-pulse durations (a,c:
τ2 = 150 ns; b,d: τ2 = 250 ns). The recoil signals are qualitatively
different for the two polarizations because of effects due to magnetic
sublevels. In the simulation, we used initial m-level populations
�Jgmg

(0) = {0.05,0.10,0.20,0.30,0.20,0.10,0.05}, where mg = −3
on the left and mg = 3 on the right, which produced the best
agreement with the data for measured pulse parameters. Pulse
parameters: detuning � ∼ 40 MHz, intensity I ∼ 13 mW/cm2,
first-pulse duration τ1 = 500 ns, pulse rise time τrise = 20 ns.

(C3 1 4
0 1 1 ∼ 0.598). As a result, in the presence of spontaneous

emission, circularly polarized sw pulses produce extreme-state
pumping. Similarly, for a linearly polarized sw pulse, the atom-
field couplings are largest for the mg = 0 state (C3 1 4

0 0 0 ∼ 0.756,
while C3 1 4

3 0 3 = 0.5). Consequently, there is optical pumping
toward the mg = 0 state. In this case, however, the atom-field
coupling is not as strong as it is for the mg = Jg state with
a σ+-polarized beam. Therefore, for a given field strength,
higher-order momentum states will be populated for circularly
polarized excitations. As a result of these two considerations,
the recoil curves are qualitatively different for linear and
circular polarizations.

Figure 8 shows data overlayed with the prediction of the
two-level model [Eq. (6)] as well as output from numerical
simulations for the conditions of the experiment. Only a
temporal shift and amplitude scaling has been applied to the
predictions of the analytical model and the simulation—no
fits were performed in this plot. It is clear that the simulation
successfully models the data for measured pulse parameters
such as the detuning, pulse duration, and intensity. The initial
sublevel populations are not measured in the experiment and
were assumed to be similar to those measured in Table I
(distribution peaked near mg = 0). In contrast, the two-level
model gives a poor prediction of the signal shape when the

FIG. 8. (Color online) Data from the two-pulse recoil experiment
for second-pulse durations τ2 = 70 ns (a) and 98 ns (b) over-
layed with predictions of the two-level theoretical model [Eq. (6),
dashed blue curve) and a multilevel simulation (solid red curve).
No fits were performed here. There is good agreement between
the simulation and the data for measured pulse parameters. In
contrast, the two-level theory gives a poor prediction of the data
for the same parameters. The distribution of initial m-level pop-
ulations in the simulations was set to be similar to those shown
Table I: �Jgmg

(0) = {0.05,0.10,0.25,0.35,0.20,0.03,0.02}. Pulse pa-
rameters: τ1 = 300 ns, τrise = 20 ns, � ∼ 8.36�N, �0 ∼ 5.2�N.
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measured pulse parameters are used as inputs. These results
suggest that the simulation can be used to study a variety of
properties associated with this interferometer, including pos-
sible systematics that would affect a precision measurement
of the recoil frequency. We discuss other applications of the
simulation in Sec. VI.

B. Phase evolution during standing-wave interaction

We now describe the phase evolution of momentum states
subject to sw excitation. We separate the discussion into three
parts: phase dynamics due to spontaneous emission, phase
dynamics due to stimulated emission and absorption, and
a measurement of the combined effects including magnetic
sublevels. These effects are expected to be important for
matter-wave interference when the excited state contributes
significantly to the relative phase between the different
momentum states of the ground level. We describe these effects
in the context of a single sw interaction using a theoretical
treatment and compare the theoretical predictions to the results
of simulations. Finally, we observe trends associated with these
effects using the echo AI and verify these observations using
two-pulse simulations.

1. Spontaneous emission

In this section, we summarize our theoretical understanding
of the influence of spontaneous emission on the shape of the
recoil signal. The expression for the one-pulse recoil signal
[Eq. (A16)] contains the essential physics relevant for this
discussion. The consequences of spontaneous emission on the
two-pulse recoil signal [Eq. (6)] stem from the same effects as
those in the one-pulse signal.

There are two main features that are observed as a
consequence of including spontaneous emission in the theory.
First, within a single period, maxima adjacent to the signal
zeros have different amplitudes. We refer to this as the
asymmetry in the recoil signal. Second, there is a temporal shift
of the zeros in the signal toward earlier times relative to the
zeros without spontaneous emission. Both of these features are
best demonstrated when the pulse area is large—causing the
double-peak structure within each period of the recoil signal.
This is illustrated in Fig. 9 on the basis of Eq. (A16) and has
been observed experimentally (see Figs. 6, 7, and 8). Both of
these features are present only when the spontaneous emission
parameter, θ , is nonzero [see Eq. (3)].

For the moment we consider a system without spontaneous
emission (θ = 0 and the complex pulse area, �1 ≡ u1e

iθ , is
real). The signal develops multiple peaks within each period
for large pulse areas [compare Fig. 3(c) to Fig. 3(d)]. This
structure is due to the interference of higher-order momentum
states which become more populated as u1 increases. We
demonstrate this interference by truncating the infinite sum
in Eq. (A11) to only n = −2, . . . ,2 so that

iẼ1(t) ≈ −J2(�1)J1(�∗
1)e−i3ωq t − J1(�1)J0(�∗

1)e−iωq t

+ J0(�1)J1(�∗
1)eiωq t + J1(�1)J2(�∗

1)ei3ωq t

+ J2(�1)J3(�∗
1)ei5ωq t . (21)

This expression contains the first three harmonics of the
backscattered electric field that oscillate with frequencies ±ωq ,

FIG. 9. Comparison of recoil curves (backscattered field intensity
as a function of time) predicted by the one-pulse theory [Eq. (A16)],
with and without spontaneous emission. The black curve corresponds
to a spontaneous emission-free system (� = 0 → θ = 0), while the
gray curve corresponds to a system where spontaneous emission is
present (� = �N → θ = −0.133 rad). The solid vertical grid line
shows the first zero in the signal after t = 0 in the absence of
spontaneous emission, while the dashed grid line shows the zeros
shift by a temporal amount δt = θ/ωq in the presence of spontaneous
emission. Pulse parameters: � = 7.5�N, �0 = 1.5�N, τ1 = 250 ns,
pulse area u1 ∼ 1.43.

±3ωq , and 5ωq , respectively. The sum of different harmonics
gives rise to constructive and destructive interference in the
field amplitude. The result is a diminished amplitude between
the zero crossings of the total backscattered field—producing
the double-peaked structure. This effect is shown in Fig. 10
using the terms corresponding to n = 0, 1, and 2 in Eq. (21).
In the absence of any phase shifts of the individual harmonics,
the shape of the recoil signal [s̃1(t) = |Ẽ1(t)|2] is symmetric
(black curve in Fig. 9).

We now consider the case where spontaneous emission
is present in the system (θ �= 0). The spontaneous emission
parameter, θ , causes a phase shift of each harmonic comprising
Ẽ1(t) in Eq. (2). This is demonstrated by expanding the Bessel
functions in Eq. (21) in a Taylor series and keeping only the
leading terms:

Ẽ1(t) ≈ −
(

u1 + u5
1

32

)
sin(ωqt − θ ) + u3

1

4
sin(ωqt + θ )

+ u3
1

8
sin(ωqt − 3θ ) − u3

1

8
sin(3ωqt − θ )

+ u5
1

64
sin(3ωqt + θ ) + u5

1

96
sin(3ωqt − 3θ ). (22)

Each term in Eq. (22) has been phase shifted by an integer
multiple of θ , but no two terms are shifted by the same temporal
amount [colored curves in Fig. 10(b)]. When all values of n are
included, the different temporal shifts sum to a net shift of δt =
θ/ωq [shown by the dashed grid lines in Figs. 9 and 10(b)].

Figure 10(b) illustrates the harmonic components of the
backscattered field amplitude [Ẽ1(t) from Eq. (2)] associated
with the interference 〈nh̄q|(n + 1)h̄q〉 for n = 0, 1, and 2 using
θ = −0.133 rad. When summed over all harmonics, the field
exhibits more constructive interference on one side of the wave
form than the other [black curve in Fig. 10(b)], giving rise to an
asymmetry in the peak amplitude within each recoil period and
a temporal shift of the zeros. The corresponding field intensity,
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FIG. 10. (Color online) Real part of the harmonics comprising the
backscattered electric field, Ẽ1(t) [Eq. (A11)], for a system without
spontaneous emission (a, θ = 0) and with spontaneous emission
(b, θ = −0.133 rad). Each graph shows harmonics associated with
the interference of momentum states |nh̄q〉 and |(n + 1)h̄q〉 for n = 0,
1, and 2 (red, green, and blue curves, respectively). These harmonics
correspond to the n = 0, 1, and 2 terms in Eq. (A11). The total
backscattered field, shown as the black curve, is the sum of all
harmonics due to the interference between p states differing by h̄q. In
(b), the total scattered field is shifted by a temporal amount δt = θ/ωq

as shown by the dashed grid line. Note that the imaginary part of
Ẽ1(t) sums to zero in both (a) and (b) when all terms in Eq. (A11) are
included. The pulse parameters are the same as in Fig. 9.

s̃1(t), is shown in Fig. 9 as the gray curve. When θ = 0, there
is no temporal shift, thus no asymmetry, and we recover the
black curve in Fig. 9.

In the experiment, we always observe a negative asym-
metry, which means that the amplitude of the first peak of
the recoil signal is higher than the second peak between
consecutive zeros, as shown in Figs. 6 and 8. A positive
asymmetry corresponds to the second peak amplitude being
larger than the first. A negative asymmetry implies that the
zeros of the signal are shifted toward earlier times (θ,δt < 0),
which is a consequence of using a positive detuning. These
observations are consistent with theoretical predictions.

The phases of each harmonic in Eq. (22) represent the
difference in phase between two interfering momentum states.
This phase difference is a direct result of the decay of the
excited state into the ground state. When the harmonics are
summed over, the relative phases are effectively averaged
and the resulting phase shift of the scattered field amplitude
represents a weighted average phase difference between all
interfering momentum states that differ by h̄q. To first order,
this phase is approximately equal to θ . Spontaneous emission
is evidently one mechanism by which the relative phases
of two interfering momentum states can be nonzero. In the

next section, we show that stimulated emission and absorption
produce similar effects.

2. Stimulated emission and absorption

In this section, we illustrate that stimulated emission and
absorption between the ground and excited levels leads to a
time-dependent asymmetry in the recoil signal. To isolate this
effect, we generate simulations of the one-pulse recoil signal
in the absence of spontaneous emission (i.e., � = 0). Under
these conditions, the signal exhibits either positive or negative
asymmetry depending on the pulse duration, τ1, as shown
in Fig. 11. This originates from the dynamic evolution of the
atomic state amplitudes during the sw pulse (Rabi oscillations)
due to stimulated emission and absorption. In contrast, the
analytical theory for the one-pulse recoil signal [Eq. (A16)],
which ignores the dynamic exchange of population between
the ground and excited states [see Eq. (A2a)], predicts that
there should be no asymmetry or phase shift when there is no
spontaneous emission. Results from the simulations indicate
that, by changing τ1, the asymmetry oscillates between positive
and negative at the same frequency as the generalized Rabi
frequency.

The oscillations in the asymmetry shown in Fig. 11
originate from the time-dependence of the relative phase
between interfering momentum states. As the interaction time
with the sw pulse increases, there is a transfer of momentum
from the ground state to the excited state and back to the
ground state again. The intermediate process of going through
the excited state imprints a momentum-dependent phase on the
ground-state wave function. As a result, the phase difference
between two adjacent p states changes as a function of the
interaction time, τ1.

FIG. 11. (Color online) Simulations of one-pulse recoil signal,
s1(t), in the absence of spontaneous emission for pulse durations
varying within one Rabi oscillation (τ1 ∼ 100–116 ns). In (a) the
recoil signal begins roughly symmetric at τ1 = 100 ns. As τ1 is
increased, the signal exhibits positive asymmetry and shifts toward
later times. Panel (b) shows the corresponding Rabi oscillation in
the ground-state population for each τ1 in (a). In (c) the signal
shifts toward earlier times and shows negative asymmetry as τ1

increases from 110 to 116 ns. Panel (d) shows the corresponding
Rabi oscillations for (c). Here the generalized Rabi frequency
is

√
�2

0 + �2 ∼ 5.4�N ∼ 32 MHz. Pulse parameters: τrise ∼ 1 ns,
� = 5�N, �0 = 2�N, � = 0.
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The amplitude of the phase oscillation is largely dependent
on the bandwidth of the sw pulse, which has contributions
from the pulse duration, τ1, and the rise time, τrise. A large-
bandwidth pulse produces a large-amplitude phase oscillation.
As τ1 increases, the bandwidth of the pulse decreases—giving
rise to a damping of the oscillation amplitude. This result can
also be inferred from the time-dependence of the excited-state
population, since the relative phase between momentum states
is a measure of its contribution to the recoil signal.

3. Combined phase effects

In the experiment, both stimulated and spontaneous pro-
cesses contribute to phase shifts of the recoil signal. In the
following section, we discuss the combination of these two
mechanisms and measure their affect on the signal. This
constitutes one of the most important results in this article.

We first describe an analytical calculation that predicts a
dynamic phase for each momentum state that depends on
both the parameter θ [Eq. (3)], which is a measure of the
number of spontaneous emission events, and the pulse area
u1, which is a measure of the number of stimulated processes.
This calculation is valid for the one-pulse recoil signal.

Since the interferometer is sensitive to the relative phase of
interfering momentum states, this p-dependent phase provides
a direct connection between matter-wave interference and
transitions due to both spontaneous and stimulated processes.
However, the calculation of the relative phase is subject to
the limitations of the theoretical framework developed in
Sec. III (weak, far off-resonance pulses and short interaction
times). This necessitates the use of simulations to develop
more accurate predictions.

When spontaneous emission is included in the theory, the
excited state imprints a momentum-dependent phase, φ(p), on
the ground-state wave function, which can be obtained from

φ(p) = arg[ag(p)], (23)

where ag(p) is the amplitude of state |p〉 in the ground level.
The phase of a discrete momentum state |p = nh̄q〉 can be
obtained using Eq. (A7) for ag(p):

φ(1)
n = arg[(−i)nJn(u1e

iθ )], (24)

where the superscript (1) indicates that this calculation is valid
for a single sw pulse and the subscript n labels the momentum
state. Expanding the Bessel function in a series in powers of
u1e

iθ , one can show that

tan

(
φ(1)

n + n
π

2

)

=
∑∞

j=0
(−1)j

j !(j+|n|)!
(

u1
2

)2j+|n|
sin[(2j + |n|)θ ]∑∞

l=0
(−1)l

l!(l+|n|)!
(

u1
2

)2l+|n|
cos[(2l + |n|)θ ]

. (25)

To first order: φ(1)
n ≈ |n|θ − nπ/2, which is independent of the

pulse area, u1, and therefore ignores stimulated processes. This

result indicates that the phase difference between interfering
momentum states is

�φ(1)
n = φ(1)

n − φ
(1)
n−1 ≈

{
θ + π/2 for n � 1,

−θ + π/2 for n < 1.
(26)

For higher orders, however, stimulated processes contribute
to the phase of each momentum state and there is a distinct
dependence on the pulse area. The AI is sensitive to the average
relative phase between p states that differ by h̄q. For an
arbitrary ground state amplitude ag(p), this quantity can be
expressed as

〈�φ〉 = arg

[∫
ag(p)a∗

g(p − h̄q) dp

]
, (27)

where the 〈· · ·〉 notation denotes an average over momentum.
For the specific case of the one-pulse recoil experiment, the
average relative phase is

〈�φ(1)〉 = arg

[
−i

∑
n

Jn(u1e
iθ )Jn−1(u1e

−iθ )

]
, (28)

which has a distinct dependence on the sw pulse duration, τ1.
Figure 12 illustrates the dependence of 〈�φ(1)〉 on the

sw pulse duration, τ1. Predictions are shown for both theory
[dashed red line—Eq. (28)] and simulations in the presence
and absence of spontaneous emission [dotted blue and solid
black lines, respectively—Eq. (27)].

For small τ1, the theoretical expression for the average
relative phase [Eq. (28)] is approximately equal to θ . This
result can also be inferred from Eq. (26), which is valid
only for small u1. According to theory, the contribution from
spontaneous emission is a constant phase offset equal to θ

[Eq. (3)]. As the interaction time increases, the theory predicts
an increase in |〈�φ(1)〉|, as well as a slow oscillation. The
frequency of this oscillation is empirically determined to be

FIG. 12. (Color online) Average relative phase between momen-
tum states differing by h̄q as a function of sw pulse duration, τ1. An
offset of π/2 has been added to the vertical axis. The dashed gray
horizontal grid line shows the value of θ ∼ −0.06 rad from Eq. (3).
The dashed red line is a calculation based on Eq. (28) with u1 given
by Eq. (A4). The dotted blue line shows the prediction of Eq. (27)
computed from a simulation in the absence of spontaneous emission.
The solid black line is the analogous prediction of a simulation
including spontaneous emission. The steep rise of the two simulations
at small τ1 represents the first Rabi cycle of phase transfer from
p = 0 to neighboring states. These states initially have zero amplitude
and their phases are not well defined. Pulse parameters: τrise ∼ 1 ns,
� = 8.4�N, �0 = 4.5�N.
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∼ 2�2
0/� ∼ 2.7 MHz, which is due to stimulated emission

and absorption.
Results of simulations in the absence of spontaneous

emission (dotted blue line) show an additional high-frequency
oscillation in 〈�φ(1)〉 as a function of τ1. These oscillations
are caused by the transfer of phase between the ground
and excited state due to stimulated processes and have
a frequency approximately equal to the generalized Rabi
frequency

√
�2

0 + �2 ∼ 56 MHz. These high-frequency phase
oscillations are not taken into account in Eq. (28) as a result of
the far off-resonance assumption. When spontaneous emission
is included in the simulations (solid black line), the oscillations
are highly damped. As the pulse area increases, there is a
significant departure of the theory from the simulations. We
attribute this departure to the absence of dynamic population
transfer between the ground and excited states and the weak-
field assumption made in the theory.

We now review results of measurements of the average
relative phase, 〈�φ(2)〉, from the two-pulse recoil experiment
and corresponding simulations. Figure 13 shows the variation
in 〈�φ(2)〉 as a function of τ2. This variation corresponds to
the change in the asymmetry of the signal shapes shown in
Fig. 6. We measure 〈�φ(2)〉 from the data by fitting to the
square of Eq. (10b) (which includes effects due to m levels)
and using the best-fit value of θ . From the data, 〈�φ(2)〉 seems
to decrease and level out near −35 mrad after τ2 ∼ 90 ns. This
can be explained by the excited-state population approaching
steady state—giving rise to a saturation of momentum-state
excitation.

Figure 13 also shows results of two-level simulations
(Jg = 0) implemented with the same pulse parameters as the

FIG. 13. (Color online) Variation of average relative phase,
〈�φ(2)〉, as a function of second-pulse length. The relative phase
measured from fits to experimental data (diamonds) are overlayed
with the results of a two-level simulation (triangles, where Jg = 0)
and a multilevel simulation (circles, where Jg = 3). A subset of the
multilevel simulations overlayed with data is shown in Fig. 8. 〈�φ(2)〉
is measured from the data and the multilevel simulation by fitting to
the square of Eq. (10b) and using the best-fit value of θ . Similarly, it
is measured for the two-level simulation by fitting to Eq. (6). A subset
of the data from which 〈�φ(2)〉 is extracted is shown in Fig. 6, with
the corresponding fits shown as solid red curves. The error bars for
each set of points are equal to the statistical uncertainties in θ from
the corresponding fits. The pulse parameters are the same as those in
Fig. 6, except for the two-level simulations where the rise time was
reduced to τrise = 10 ns to illustrate the presence of oscillations in
〈�φ(2)〉 as a function of τ2.

data (except for the rise time which was set to τrise = 10 ns).
Here, 〈�φ(2)〉 is measured by fitting each recoil curve
generated by the simulation to Eq. (6) (which incorporates
only two levels). This is equivalent to the method used to
measure the average relative phase from data. The trend of
the two-level simulation is qualitatively similar to the black
curve shown in Fig. 12. In comparison to the data, we find
an additional superimposed oscillation and a constant phase
offset. The frequency of this phase oscillation is the same as
the generalized Rabi frequency (

√
�2

0 + �2 ∼ 59 MHz in this
case). This is consistent with effects due to stimulated emission
and absorption, as discussed in Sec. V B2. The oscillations
are quickly damped as the excited state population approaches
steady state. The rate at which this occurs is mainly determined
by the bandwidth of the pulse (which has contributions from
both τ2 and τrise) and the spontaneous emission rate. In these
two-level simulations, we have reduced the rise time of the sw
pulses from 20 ns (as measured in the experiment) to 10 ns in
order to demonstrate the presence of these oscillations.

The red circles shown in Fig. 13 represent simulations
including magnetic sublevels (Jg = 3). These results show
no phase oscillations as a function of interaction time, which
is consistent with the data. The absence of phase oscillations
in the data and the multi-level simulation is attributed to the
relatively long rise time (τrise ∼ 20 ns) of the excitation pulses,
as discussed in the previous subsection. There is also additional
damping of phase oscillations due to the interference between
backscattered fields from each ground-state magnetic sublevel.

Although the trend in 〈�φ(2)〉 from both the two-level and
the multilevel simulations is similar to the data, there is a
small phase offset between the two. This can be explained
in the following manner. First, the offset is equivalent to a
difference in the level of asymmetry between the data and
the simulations. This is not surprising since our estimates
of various input parameters, such as the Rabi frequency
and m-level populations, are not directly measured in the
experiment. Second, our ability to measure 〈�φ(2)〉 from
the data is limited by the signal-to-noise. Since 〈�φ(2)〉 is
estimated by fitting to the data, and each point in the fit is
equally weighted, this results in an overestimation of the phase
value and an underestimation in the uncertainty of that value.
This is especially true at small τ2. This is because the quantity
being measured is highly shape-dependent and, at small τ2,
where there is very little asymmetry in the data, a small amount
of noise can cause a large error in the measurement.

The time evolution of the relative phase predicted by the
two-level and the multilevel simulations, however, are very
similar. This suggests that 〈�φ(2)〉 is largely unaffected by
the presence of magnetic sublevels but depends mostly on the
sw pulse parameters and the magnitude of the spontaneous
emission rate—which, aside from the pulse rise time, were the
same in both simulations. This is consistent with the theory
presented earlier.

In a previous article [16], we investigated the influence
of spontaneous emission on the two-pulse recoil signal using
both theory and experiments. We used a phenomenological
model for the two-pulse recoil signal that was successful in
predicting the asymmetry in the signal shape and the temporal
offset. Since the spontaneous emission parameter, θ , is related
to the spontaneous emission rate, �, it appeared that there was
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a variation in � with the pulse duration and a measurement
of � appeared to be possible by fitting experimental data
using this model (Eq. (26) in Ref. [16]). However, the average
relative phase of the signal, 〈�φ(2)〉, depends on both θ and
the pulse area. The phenomenological model did not take into
account this pulse-area dependence. As a result, erroneous
values of θ , and therefore �, were measured when τ2 changed.
Thus, the conclusion that � depended on τ2 was not justified.
The dependence of the average relative phase on spontaneous
and stimulated processes, as well as effects due to magnetic
sublevels, was not fully understood until recently. With this
interpretation, we can explain the variation of θ with τ2

observed in Ref. [16].

VI. CONCLUSION

We have developed a comprehensive numerical simulation
of a time-domain echo interferometer that is successful
in predicting a variety of physical effects associated with
matter-wave interference. The simulation accurately models
experimental results for measured input parameters. Based
on these results, we have determined that the interference
between backscattered electric fields from each ground-state
magnetic sublevel significantly affects the signal shape, which
is consistent with experimental observations. Additionally, a
more complete understanding of the phase modulation of the
atomic wave function induced by sw pulses has been developed
on the basis of the simulation.

The simulation motivated the development of an improved
analytical model of the signal that accounts for both spon-
taneous emission and ground-state magnetic sublevels. Using
the analytical model, we were able to improve the relative error
in measurements of the recoil frequency by a factor of ∼3. We
were also able to estimate magnetic sublevel populations at
the time of the readout pulse.

Through theoretical analysis and simulations, we have
clarified the role of spontaneous emission on the recoil signal.
We have also explained how the relative phase between
interfering momentum states affects the signal on the basis of
stimulated emission and absorption, which is most important
when the excited state is significantly populated. These
effects are not unique to the AI considered in this article,
but apply more generally to interferometers that involve
momentum-state interference induced by laser excitation, such
as frequency-domain AIs [26].

The robustness of the simulations suggest that they can be
used to study the AI under a variety of interesting conditions,
such as the near-resonance (|�| ∼ �), high-intensity (�0 ∼
|�|), or long-pulse (τj � |�|−1) regimes. An important appli-
cation of this work also includes the study of systematic effects
on a precision measurement of the atomic recoil frequency
using the three-pulse technique outlined in Refs. [13,16].
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APPENDIX

We review the calculation of the recoil signal in the one-
pulse regime. The evolution of the atomic state amplitudes is
governed by the Schrödinger equation

H̃
(

ae

ag

)
= ih̄

(
ȧe

ȧg

)
, (A1)

where H̃ is the Hamiltonian given by Eq. (1). We assume
that the rate of change of the excited state amplitude is small
compared to the detuning (|ȧe| � |�|), which results in the
following relations:

ae = �eiθ

(�2 + γ 2)1/2
ag, (A2a)

ȧg = −i
�2eiθ

(�2 + γ 2)1/2
ag. (A2b)

Here θ is a phase that characterizes the amount of spontaneous
emission occurring during the pulse and is given by Eq. (3).
Equation (A2b) is integrated to obtain the ground-state
amplitude for a pulse of duration τ1,

ag(r) = ag(r,0)e−i�1 cos q·r , (A3)

where q = k1 − k2 = 2k is the difference between the k

vectors comprising the sw and �1 ≡ u1e
iθ is the complex

pulse area with magnitude u1 given by

u1 ≡ �2
0τ1

2�

[
1 +

(
�

2�

)2
]−1/2

. (A4)

We assume the initial state of the atom to be a plane wave,
ag(r,0) = V −1/2eip0·r/h̄, with momentum p0 = Mv0 = h̄k0

and interaction volume V .
In Eq. (A3) we have ignored a −i�1 term in the exponent

because it is independent of r and is therefore unimportant for
interference. It also causes ag to decay exponentially during
the pulse (since �1 is a complex quantity), which does not
preserve normalization. Since we assume the system is closed
(no atoms are being lost), this corresponds to an unwanted
physical process and is a direct result of using a Hamiltonian
that is non-Hermitian [Eq. (1)].

From Eq. (A3), it is clear that the effect of interacting with
the sw pulse is to spatially modulate the phase of the ground-
state amplitude. Equivalently, the sw field is a phase grating
that diffracts the atomic wave function into a superposition
of momentum states. Using the Jacobi-Anger expansion, we
decompose the ground-state amplitude into its harmonics,

ag(r) = ag(r,0)
∞∑

n=−∞
(−i)nJn(�1)einq·r , (A5)

where Jn(x) is the nth-order Bessel function of the first kind.
Here, the index n indicates the order of each harmonic,
which corresponds to a specific momentum state: einq·r ∝
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| p = nh̄q〉. The sw pulse only populates the ground state with
even multiples of the photon momentum, h̄k. In contrast, the
excited state is populated with only odd multiples of h̄k due
to an extra factor of �(r) in the excited-state amplitude, ae,
which can be written as

ae(r) = �0e
iθ

2(�2 + �2)1/2
ag(r,0)

×
∑

n

(−i)nJn(�1)[ei(2n−1)k·r + ei(2n+1)k·r ]. (A6)

The population of each momentum state, |Jn(�1)|2, is com-
pletely determined by the magnitude of the pulse area, u1.
However, the phase of each momentum state is determined
by both the magnitude and the phase of the pulse area, u1

and θ , respectively. This has an important consequence for the
interference of two momentum states (see Sec. V B3).

After the sw pulse turns off, the atom evolves in free
space. The population of the excited state is scaled by a factor
�0/|�| � 1 compared to the ground state and is therefore ig-
nored. The Hamiltonian in free space contains only the kinetic
energy term, P̂ 2/2M , where P̂ is the momentum operator.
Therefore, the calculation of the ground-state amplitude at time
t is much more transparent by transforming into momentum
space:

ag( p) = (2πh̄)3/2

√
V

∑
n

(−i)nJn(�1)δ3( p − p0 − nh̄q). (A7)

The solution to the Schrödinger equation in this regime dictates
that the phase of the ground-state amplitude is modulated
differently for each momentum state:

ag( p,t) = ag( p) exp

[
− i

h̄

p2

2M
t

]
. (A8)

By transforming back to position space, the ground-state
amplitude a time t after the sw pulse is

ag(r,t) = 1√
V

ei(p0·r−ε0t)/h̄

×
∑

n

(−i)nJn(�1)einq·re−inq·v0t e−in2ωq t , (A9)

where ε0 = p2
0/2M is the initial kinetic energy of the atom,

v0 = p0/M is the initial velocity, and ωq = h̄q2/2M is the
two-photon recoil frequency.

We are interested in how the ground-state atomic density
distribution, ρg(r,t) = |ag(r,t)|2, evolves in time:

ρg(r,t) = 1

V

∑
n,η

iηJn(�1)Jn+η(�∗
1)e−iηq·r eiηq·v0t eiη(2n+η)ωq t .

(A10)

This quantity contains a sum over all orders of interference
between momentum states and is shown in Figs. 3(a) and 3(b).
The index η—equal to the difference between momentum
states in multiples of h̄q—denotes the order of the interference.
This form of ρg helps identify the phase due to spontaneous
emission and its subsequent role in the one-pulse recoil signal.
The density is modulated in time at integer multiples of ωq .
This multiple depends on the order of the momentum state,
n, and the order of the interference, η. The Doppler phase

ηq · v0t results in a dephasing of the density modulation when
the density is averaged over the velocity distribution of the
atomic sample. However, for the purposes of this discussion,
we have assumed that the velocity distribution is infinitely
narrow such that Doppler dephasing is negligible. As a result,
we have ignored the Doppler phase in all expressions that
follow.

The density modulation can be detected in an experiment
by measuring coherent Bragg scattering from a traveling
wave readout pulse. However, this technique is sensitive
only to the q Fourier harmonic of the density distribution
when the read-out pulse has the same wavelength, λ, as
the sw pulse. This is because Bragg scattering occurs for
structures with a spatial periodicity of mλ/2, for m = 1,2, . . . .

Higher-order spatial harmonics of the density grating (i.e.,
those periodic at λ/4, λ/6, . . .) do not scatter the light. Thus,
the backscattered electric-field amplitude is proportional to
the q Fourier harmonic of ρg(r,t), which corresponds to the
amplitude of the e−iηq·r term in Eq. (A10) with η set to unity:

Ẽ1(t) ∝
∞∑

n=−∞
iJn(�1)Jn+1(�∗

1)ei(2n+1)ωq t . (A11)

A simpler form of the backscattered electric field am-
plitude is realized by using the Bessel function summation
theorem [16,18,27]

∑
n

Jn(�1)Jn+η(�∗
1)ei(2n+η)ωq t = iηJη(κ1)

(
sin(ωqt − θ )

sin(ωqt + θ )

)η/2

,

(A12)

where

κ1 ≡ 2u1

√
sin(ωqt + θ ) sin(ωqt − θ ), (A13)

resulting in the following expression for Ẽ1(t):

Ẽ1(t) ∝ −J1(κ1)

(
sin(ωqt − θ )

sin(ωqt + θ )

)1/2

. (A14)

However, this form contains a singularity at t = −(θ +
mπ )/ωq , which is not physical. The singularity can be removed
by using the recurrence relation 2νJν(x) = x[Jν−1(x) +
Jν+1(x)], such that

Ẽ1(t) ∝ −u1 sin(ωqt − θ )[J0(κ1) + J2(κ1)]. (A15)

The analytical expression for the one-pulse recoil signal,
denoted by s̃1, is the intensity of the backscattered field, which
is proportional to |Ẽ1(t)|2:

s̃1(t) ∝ u2
1 sin2(ωqt − θ )[J0(κ1) + J2(κ1)]2. (A16)

This expression for the recoil signal is valid for an atomic
sample with a narrow velocity distribution (BEC conditions)
after interacting with a single sw pulse.
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