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Design and construction of an
efficient electro-optic modulator for
laser spectroscopy

C. Mok, M. Weel, E. Rotberg, and A. Kumarakrishnan

Abstract: We discuss design considerations and construction of a home-built electro-optic
phase modulator (EOM) that can be used for locking a laser to an atomic transition. The
EOM is designed to operate at a resonant frequency of ≈20 MHz and imposes a phase
modulation on a laser beam. The phase-modulated light is sent through a reference cell
containing a dilute gas of rubidium atoms. When the laser is scanned over an atomic
resonance, the absorption of light through the cell can be detected and mixed down to DC to
produce a dispersion shaped “error” signal. The error signal can be used to lock the laser to
the atomic resonance. We also describe tests of the basic properties of the resonant circuit.
The Q of the circuit is measured to be 10, resulting in 60% efficiency for the first-order
sidebands at RF drive powers of 0.7 W. Applications include the spectroscopy of laser-cooled
atoms.

PACS Nos.: 01.50.Pa, 39.25.+k 32.80.Pj, 42.62.Fi

Résumé : Nous discutons la conception et la construction dans notre laboratoire d’un
modulateur de phase électro-optique (EOM) qui peut être utilisé pour synchroniser un laser
sur une transition atomique. L’EOM est conçu pour opérer à une fréquence de résonance de
≈20 MHz et imposer une modulation de phase à un faisceau laser. Ce faisceau est envoyé
dans une cellule contenant un gaz dilué d’atomes de rubidium. Quand le laser est analysé sur
une résonance atomique, l’absorption de la lumière à travers la cellule peut être détectée et
mélangée jusqu’à DC pour produire un signal d’erreur de forme dispersée. Ce signal d’erreur
peut être utilisé pour synchroniser le laser sur la résonance atomique. Nous décrivons les tests
effectués sur les caractéristiques de base du circuit résonant. Nous mesurons un Q de 10, ce
qui donne une efficacité de 60 % pour les sidebands de premier ordre à une puissance RF de
0.7 W. Les applications incluent la spectroscopie d’atomes refroidis par laser.
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1. Introduction

Tunable lasers have multiple wavelength-selecting elements such as piezo-controlled etalons and
gratings. Typically, the length of the lasing cavity is controlled by a voltage sent to a piezo-electric
transducer. The laser-cavity length can change because of a number factors such as temperature changes,
and mechanical vibrations. These factors affect the laser-frequency stability. The basic challenge in
precision spectroscopy is to maintain a stable laser frequency [1].

The standard method of frequency-locking involves a two step process outlined in ref. 2. An external
Fabry–Perot cavity is used in a feedback loop to obtain a narrow line width of ∼1 MHz. The slow drift
of the laser frequency is compensated by locking the laser to a reference point on an atomic spectral
feature using a lock-in amplifier. A modulation frequency of the order of a few kHz is supplied to the
scanning element of the laser. When the laser is scanned across the atomic resonance at a frequency that
is much lower than the modulation frequency, the lock-in amplifier detects an absorption signal at the
frequency of modulation and generates a dispersion shaped DC error signal with a zero-crossing at the
reference frequency. The error signal is continuously fed back to the laser, thereby correcting the laser
frequency. We have recently reviewed the properties of lock-in amplifiers and outlined the construction
of an inexpensive model in refs. 3 and 4.

A vapour cell containing a dilute gas of atoms is often used to obtain spectral lines that serve as
a frequency reference. Since the spectral features are Doppler-broadened, the laser frequency can be
stabilized only to a precision of a few tens of megahertz and is unsuitable for many applications in laser
spectroscopy such as atom trapping. The widely used technique of saturated absorption [5] is used to
obtain Doppler-free spectral features with a characteristic width of the order of the natural line width
of the atomic transition ∼10 MHz.

Although lock-in amplifiers are widely used, an alternative technique involves the use of electro-
optic phase modulators (EOMs) [6] to produce the dispersion-shaped error signal. The EOM can be
used in the saturated absorption portion of the setup, thereby avoiding the need to modulate the laser
frequency used in the experiment. The EOM produces a phase modulation of the laser beam that results
in frequency sidebands. The interaction of the sidebands with the dilute gas produces the error signal.
Typically, an EOM can be operated at radio frequencies of the order of the inverse of the atomic response
time (≈100 MHz). This is an obvious advantage for reducing 1/f noise. We note that the modulation
of the laser frequency used in the experiment can also be avoided using an acousto-optic modulator in
the saturation absorption setup.

In this paper, we discuss the design and construction of an inexpensive EOM operating at a frequency
of ∼20 MHz. The EOM consists of a resonant inductor, resistor, capacitor (LRC) circuit in which there is
a wire wound inductor and a distributed capacitor (EOM crystal). The energy is coupled into the circuit
using a transformer arrangement. The rest of the paper is organized as follows. Section 2 contains a
review of theoretical concepts. In Sect. 3, we explain the constraints of the design and the construction of
the EOM. In Sect. 4, we present measurements of the quality factor of the resonant circuit and describe
simple tests that validate the design. These include measurements of the sideband intensity and the
dispersion shape used for locking the laser to the atomic resonance. In particular, we show that the
efficiency of the sidebands is appreciable (∼60% for a drive power of ∼0.7 W). This makes the device
suitable for laser spectroscopy, and the design can also be adapted for use in upper level undergraduate
laboratory experiments.

2. Mathematical model

When a time-varying electric field is applied to the nonlinear crystal inside the EOM, the index of
refraction n changes in a sinusoidal manner resulting in phase modulation of the laser beam passing
through the crystal.

For the case where the incoming laser field is polarized along the x and y directions and propagates
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Fig. 1. Frequency sidebands in the laser beam after passing through the electro-optic phase modulator.
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along the z direction, a time varying electric field applied perpendicular to the direction of propagation
results in a difference in the indices of refraction along the x and y directions. This results in a phase
difference between these electric-field components that can be quantified by a parameter known as the
index of modulation, M .

This phase shift produces frequency sidebands, with amplitudes that can be represented by [6, 7]

E(t) = E0

∞∑
m=−∞

Jm(M) exp [it (� + mω)] (1)

Here, E0 is the amplitude of the incident laser-beam electric field, m is the order of the sidebands, �
is the incident laser frequency, and ω is the drive frequency of the EOM. It is evident that the sidebands
are shifted from the central frequency by integer multiples of the EOM drive frequency. The amplitude
of each sideband is governed by a Bessel function of order m, as shown in Fig. 1. The argument of the
Bessel function contains the index of modulation M given by [8]

M = πln3rx

2dλ
Vcap(t) (2)

where n is the unperturbed index of refraction of the crystal, rx is the electro-optic coefficient for the
specific orientation of the crystal, l is the length of the crystal, λ is the wavelength of light, d is the
distance between the electrodes on the crystal, and Vcap is the voltage across the crystal. A detailed
discussion of the electro-optic effect can be found in ref. 7.

For typical values of the crystal dimensions, the index of refraction and the electro-optic coefficient,
the first-order frequency side bands have appreciable amplitudes even for relatively small values of M

(M � 1). In this case, only the central carrier frequency and the two first-order sidebands need to be
considered. Taking the real components of the electric fields in (1),

E(t)

E0
= J−1(M) cos[(� − ω)t] + J0(M) cos(�t) + J1(M) cos[(� + ω)t] (3)

Noting that J0(M) ≈ cos(M/2) and J1(M) ≈ sin(M/2), and applying the small-angle approxima-
tion, it can be shown that the electric field after the EOM is given by

E(t)

E0
= cos(�t) − M

2
[cos[(� − ω)t] − cos [(� + ω)t]] (4)

Alternatively, the incident electric field can be represented as E(t) = E0 cos[�t + φ(t)] where
φ(t) is the phase modulation due to the EOM, which can be written as φ = M sin(ωt). Here, M is the
same modulation index as defined by (2) and represents the amplitude of phase modulation. Using the
trigonometric identity for cos(A + B), we obtain

E(t)

E0
= cos(�t) · cos[M sin(ωt)] − sin(�t) · sin [M sin(ωt)] (5)
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Since M is much smaller than unity, we can apply the small-angle approximation cos [M sin(ωt)] ≈
1 and sin [M sin(ωt)] ≈ M sin(ωt), so that

E(t)

E0
= cos(�t) + M sin(�t) sin(ωt) (6)

Using the identity that sin(A) sin(B) = 1
2 [cos(A + B) − cos(A − B)], the equation for the electric

field after the EOM becomes

E(t)

E0
= cos(�t) − M

2
[cos [(� − ω)t] − cos [(� + ω)t]] (7)

which is identical to (4). Thus, it is possible to understand the physical meaning of (1). Figure 1 shows
the relative amplitudes of the sidebands in (1). We note that the upper and lower sidebands in each order
are out of phase by 180◦.

When the laser beam from the EOM passes through a dilute atomic gas, the light is phase-shifted and
attenuated. The transmitted electric field can be conveniently described by using exponential notation
as in ref. 9.

E(t)

E0
= −MT−1

2
exp[i(� − ω)t] + T0 exp[i�t] + MT+1

2
exp[i(� + ω)t] (8)

Here, T−1,0,+1 are transmission coefficients for each of the frequency sidebands.
The mth transmission coefficient is defined as follows:

Tm = exp[−δm − iφm] (9)

where m denotes the sideband index, δm is related to the frequency-dependent absorption coefficient of
the gas αm, and φm is the frequency-dependent phase shift due to the index of refraction of the gas near
an atomic spectral line. The absorption coefficient is defined as

δm = αm · l (10)

where l is the length of the sample. It is often convenient to represent δ(�) as a Lorentzian absorption
profile represented by δ(�) ∝ (1 + �2)−1. The phase shift is related to the index of refraction n(�)

and can be expressed as

φm ∝ dδ

d�
(11)

Figure 2 shows the first-order sidebands when the laser beam is scanned across an atomic resonance.

Using the definitions in (9), (10), and (11) in (8), we obtain

E(t)

E0
= M

2
exp[−δ−1 − iφ−1] · exp[i(� − ω)t] + exp[−δ0 − iφ0] · exp[i�t]

− M

2
exp[−δ+1 − iφ+1] · exp[i(� + ω)t] (12)

Taking the squared modulus of (12), and dropping terms of order M2, we obtain an expression for
the intensity of the beam transmitted by the sample

I (t)

I0
= 1 + [

exp[δ0 − δ+1] cos(φ+1 − φ0) − exp[δ0 − δ−1] cos(φ0 − φ−1)
]
M cos(ωt)

+ [
exp[δ0 − δ+1] sin(φ+1 − φ0) − exp[δ0 − δ−1] sin(φ0 − φ−1)

]
M sin(ωt) (13)
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Fig. 2. Position of sidebands at various points during the scan. The sideband closer to the peak of the
spectral feature is absorbed more than the other sideband.
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If the sidebands are close to the central frequency, the absorption and phase-shift functions are
nearly the same for all frequency components. Hence, |δ0 − δ+1|, |δ0 − δ−1|, |φ0 −φ+1|, and |φ0 −φ−1|
are much smaller than unity. We can then use the series expansion of ex to first order, and use the
small-angle approximation to obtain

I (t)

I0
= 1 + (δ−1 − δ+1)M cos(ωt) + (φ+1 + φ−1 − 2φ0)M sin(ωt) (14)

This signal I (t), is detected by a photodetector, multiplied with the RF signal used to drive the EOM
(a process known as mixing) and low-pass-filtered to obtain the DC component of the signal. This is
the dispersion-shaped error signal used for laser-frequency locking.

We consider three points on the scan in Fig. 2 for specific relative amplitudes for the sidebands.
The photodiode outputs are shown in the left column of Fig. 3. When these signals are mixed with the
in-phase and quadrature drive frequency, the results are shown in the central and right columns of Fig. 3.

We can understand the plots in Fig. 3 by noting that when the upper sideband (� + ω) is attenuated
by a dilute atomic gas, only the central frequency and lower sideband interact, creating a beat note.
When the lower sideband (� − ω) is attenuated, the central frequency and the upper sideband interact,
and the intensity modulation is π phase-shifted. It is clear from Fig. 3 that when the laser is scanned
across the atomic resonance, there will be a positive DC offset on one side of resonance, a negative
offset on the other side, with a zero crossing at resonance. Both the in-phase and quadrature components
of the mixed signal display this behaviour. This is indeed the shape of the feedback signal required to
stabilize the laser frequency. As the laser is scanned across the atomic resonance, it is clear that there is
a change in the DC value of the mixed signal. This effect occurs only in the presence of a dilute atomic
gas. In the absence of the gas, the upper and lower sidebands in each order are out of phase by 180◦ and
there will be no change in the DC value of the mixed signal.

When the signal from the photodetector given by (14) is mixed using the drive frequency of the
EOM, we obtain

Mp(�, t) = [
1 + (δ−1 − δ1)M cos(ωt) + (φ1 + φ−1 − 2φ0)M sin(ωt)

] × sin(ωt) (15)

for the in phase component and

Mq(�, t) = [
1 + (δ−1 − δ+1)M cos(ωt) + (φ+1 + φ−1 − 2φ0)M sin(ωt)

] × cos(ωt) (16)

for the quadrature component.
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Fig. 3. Left column: Photodiode signal. Center column: In-phase portion of mixed signal. Right column:
Quadrature portion of mixed signal. Top row: below-resonance peak, Center row: at atomic resonance,
Bottom row: above resonance peak. These figures were generated using (15) and (16). The modulation index
is assumed to be 0.75.

If the mixed signals in (15) and (16) are sent through a low-pass filter, we obtain the following
expressions for the in-phase and quadrature components of the error signal:

Sp(�) =
∫ t=t0+2π/ω

t=t0

sin(ωt)
[
1 + (δ−1 − δ+1)M cos(ωt) + (φ+1 − φ−1 − 2φ0)M sin(ωt)

]
dt (17)

Sp(�) = M

2
(φ+1 − φ−1 − 2φ0) (18)

Sq(�) =
∫ t=t0+2π/ω

t=t0

cos(ωt)
[
1 + (δ−1 − δ+1)M cos(ωt) + (φ+1 − φ−1 − 2φ0)M sin(ωt)

]
dt (19)

Sq(�) = M

2
(δ−1 − δ+1) (20)

The low-pass filter averages the signal temporally, essentially integrating the signal over one cycle.
Carrying out the integration filters out the DC terms expressed in (17) and (19). These are the error
signals that can be used to correct the laser frequency. The dispersion shapes given by the theoretical
model are shown in Fig. 4 and the in-phase and quadrature components have distinct shapes. Figure 4
was generated using (10), (11), (18), and (20). The quadrature component is related the differential
absorption of the sidebands, and the in-phase component is related to the differences of the indices of
refraction for the sidebands.
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Fig. 4. Theoretical dispersion shapes assuming a Lorentzian absorption profile, δ(ω) = 1/1 + ω2, and index
of refraction φ(ω) = dδ/dω. (a) Dispersion shape generated by differential absorption, Sq . (b) Dispersion
shape generated by differential phases, Sp . The shapes are distinct when the EOM drive frequency is
increased.

Fig. 5. Simplified diagram of EOM resonant circuit. Left: Simple series LRC circuit. Right: Transformer
method. The primary coil is connected to the EOM driver, and the secondary coil is connected across the
EOM crystal.

EOM
Driver

Laser Beam

3. Construction

Here we will discuss the design considerations and constraints associated with the construction of the
EOM. The Doppler-free atomic resonances from the saturated absorption discussed in the introduction
are power-broadened and have a typical linewidth of ∼10 MHz. To see the sidebands clearly, the
resonant frequency of the EOM should be somewhat larger than 20 MHz. If the resonant frequency is
much larger, the dispersion shapes will no longer behave linearly near the lock point. Our goal is to use
a low-power RF source of <1 W to drive the EOM. This can be accomplished with a LRC circuit with a
resonant frequency ω0 = 1/

√
LC so that the RF output is amplified within the circuit. The EOM cavity

consists of an electro-optic crystal that serves as a distributed capacitor, and a wire wound inductor
such that the circuit has a 50� impedance, matching the output impedance of the RF source. Thus, the
resulting electric field is suitably large across the electro-optic crystal. Figure 5 shows two possibilities
for assembling the circuit.

The electro-optic crystal is 10 mm long, and has a 1 mm square cross section. The end faces of
the crystal are antireflection coated for the wavelength λ = 780 nm and the top and bottom faces have
gold-plated electrodes. Based on (2), the phase shift φ(t) = M sin(ωt) applied across the crystal faces
can be written as

φ(t) = βξl (21)

where β = πn3r33/λ and ξ is the RF electric field. The numerical value of β is defined by the choice of
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electro-optic crystal and the operating wavelength. We use lithium tantalate as the electro-optic crystal
for which n = 2.18 and r33 = 35.8 pm/V, so that β ∼ 1.3 × 10−3/V.

Using V = E · d , where V is the voltage across the crystal length, and d is the thickness of the
crystal, we can estimate the value of V when φ = π . For the resonant circuit shown on the left of Fig. 5,
the voltage across the crystal Vcap = I (jωL) + IR where I is the current in the circuit and R is the
effective resistance. The Q factor of this resonant circuit can be approximated as ωL/R, for Q � 1 so
that V ∼ Iω0L. Thus, V 2 = 2PQ/ωC where P is the average power delivered by the RF source.

Since the crystal can be approximated as a parallel plate capacitor with capacitance C = εε0Wl/d,
we obtain

V 2 = 2PQ

ω0εε0

d

Wl
(22)

Here, ε = 43 is the dielectric constant and W is the width of the crystal (1 mm). Using (21) and
(22), with ω0 = 2π(20 × 106) and Q = 10, we obtain P ∼ 0.2 W. The challenge associated with the
construction is to obtain a Q ∼ 10 and simultaneously meet the impedance-matching requirement.

We estimated the crystal capacitance to be 3.8 pF, and this value was confirmed using a commercial
capacitance meter (4.2 pF ± 5%). Since the resonant frequency and capacitance are constraints, we
require a inductor of ∼20 µH to obtain a resonance frequency of ∼20 MHz. The inductor was wound
using 168 turns of magnet wire of 0.5 mm diameter, and connected in series with the crystal capacitor.
A drive-frequency range of 1 − 100 MHz was generated by mixing the RF outputs of two commercial
150 MHz voltage-controlled oscillators, and filtering out the sum frequency. A 1 W broad-band RF
amplifier with a 50 � output impedance was used to amplify the oscillator output and drive the EOM.
Since the impedance of such a series circuit nears zero at the resonant frequency, a 50 � resistor is
necessary to ensure the amplifier is appropriately terminated. However, this would reduce the cavity Q

by a factor of 2, and require a 40% increase in RF amplifier power. To solve this problem, we assembled
a transformer with a 400 nH primary coil coupled with the 20 µH inductor connected to the crystal,
as shown in Fig. 5. The impedance of the 400 nH inductor was ∼50 � at the resonant frequency.
The exact values of these inductors were fine-tuned by trial and error. These components were placed
in a copper box to improve RF shielding and reduce losses. The input impedance of the EOM was
measured to be 56.5 � at the resonant frequency. It should be noted that in designing EOMs to operate
at higher frequencies, additional precautions are necessary to prevent RF losses. Reference 10 describes
the challenges associated with the construction of an EOM operating at ∼1 GHz.

4. Experimental set-up and results

To validate the design, the Q factor was determined by measuring the voltage across the capacitor
as a function of the drive frequency. For these measurements, a 4 dBm amplifier was used so that the RF
oscillator was isolated the EOM. Figure 6 shows the peak-to-peak voltage Vcap across the capacitor as

a function of RF frequency f . The effective impedance of the circuit is Z =
√

R2 + (L2πf − 1
C2πf

)2

so that the total current through the circuit is I = V/Z as given by Ohm’s law. The voltage across the
capacitor Vcap is then IXc where Xc is the impedance of the capacitor. Thus, Vcap can be represented as

Vcap(f ) = A

Z
(23)

where A is a constant.
The continuous line in Fig. 6 shows a fit to the data based on the model in (23). The free parameters

associated with the fit are the circuit resistance R, L, and C. Here, A is proportional to the maximum
voltage at the resonant frequency. The fit parameters R = 65 ± 1�, C = 2.8 ± 0.1 pF, and L =
22.8 ± 0.1 µH are in reasonable agreement with independent measurements. These parameters give a
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Fig. 6. Resonance circuit response. The peak occurs at ≈19.8 MHz, and the Q factor is 10. Best fit
parameters are R = 65 ± 1�, C = 2.8 ± 0.1 pF, and L = 22.8 ± 0.1 µH.
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resonant frequency of 19.8 MHz, which is consistent with the separation of the sidebands observed in
separate experiments discussed in this section. The Q of the circuit can be estimated using Q = f/�f ,
where �f is the full width half maximum of the frequency response curve. In this case, we obtain
Q = 10. The estimates in Sect. 3 suggest that it should be possible to obtain appreciable sideband
intensity with RF drive power <1 W. An alternate technique to measure the sideband intensity is given
in ref. 11.

The experimental setup to measure the EOM efficiency and use the EOM for laser stabilization
is shown in Fig. 7. Approximately 2 mW of laser power was diverted from the laser to a saturated
absorption spectrometer. The setup consists of a glass plate that serves as a beam splitter to create a
weak probe beam, a rubidium reference cell and a 50–50 beam splitter and a photodiode. The pump and
probe beams, as labelled in Fig. 7, counter-propagate inside the rubidium cell. The EOM is placed in the
probe-beam path as shown. The probe beam is incident on a high-speed photodiode (∼1 ns rise time)
and the signal is mixed with the RF oscillator used to drive the EOM. A variable cable length serves as
a phase shifter. The mixed down signal is low-pass filtered, and fed back to the laser to complete the
feedback loop.

In the presence of the rubidium cell, the laser frequency can be scanned across an atomic resonance,
so that the amplitudes of the sidebands can be measured directly as a function of RF power. The saturated
absorption spectrum consists of peaks riding on top of a Doppler background. In Fig. 8, the laser is
scanned across the F = 3 → F ′ = 4 atomic transition in 85Rb. With the EOM off, we observe the
Doppler-free resonance. The typical widths of the spectral peaks are ∼ 10 MHz, which represents
the power-broadened linewidth. With an RF drive power of 0.7 W applied to the EOM, we observe
the presence of sidebands in the absorption spectrum. As the laser is scanned, the frequency sidebands
interact sequentially with the vapour. The frequency axis is calibrated on the basis of the known hyperfine
splittings in the Rb spectrum. As discussed in Sect. 2 and 3, it can be seen that the maximum sideband
intensity occurs in the estimated range �0 ± ω where ω = 19.8 MHz is the resonant frequency of the
EOM.

It is clear from Fig. 8 that the total efficiency of the two first-order sidebands is appreciable (∼60%)
even for modest drive powers of ∼0.7 W. Based on fits to (23), the relative heights of the peaks suggest
that the modulation index M = 1.36 for a RF drive power of 0.681 W. Using the electro-optic parameters
for lithium tantalate, LiTaO3, we can estimate the Q of the cavity to be ∼11 using (1), (2), and (21).

It is possible to detect the presence of sidebands even for relatively low RF drive powers (�1 W)
by Fourier analysis of the signal from the photodetector. However, it is particularly instructive to see
the presence of sidebands directly as in Fig. 8 using a drive power of ∼0.5 W. The efficiency of the
EOM can be demonstrated by plotting the integrated signal associated with the sidebands as a function
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Fig. 7. Experimental setup. Continuous lines with single arrows show paths of laser light. Broken lines with
double arrows indicate paths of electronic signals. The Opamp circuit has a gain of ∼3000.
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Fig. 8. Oscilloscope traces of the photodiode output when the laser is scanned over the F = 3 → F ′ = 4
transition in 85Rb. The width of this curve is determined by power-broadening as explained in ref. 3. We
have used the known splitting between Rb spectral lines to convert the time axis into frequency units. The
smooth curve is obtained with the EOM off and involved an average of 128 sweeps. With the EOM on, the
amplitude of the original peak is reduced, and secondary peaks appear. The RF power applied is 0.7 W. The
signal was averaged over only eight sweeps to prevent laser drifts from obscuring the sidebands.
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of the RF drive power. This is shown in Fig. 9. The broken line represents the predictions for the
intensity J 2

m(
√

P) where P is the RF drive power. These predictions assume the absence of higher order
sidebands. We observe that the data are better represented by a function ∝ J 2

m(P ). We attribute this
effect to the value of the modulation index becoming comparable to unity for the range of RF powers
used in these measurements. When M is large compared to unity, the distribution of energy into the
higher order sidebands cannot be ignored and this effect depletes the carrier intensity more rapidly
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Fig. 9. Intensity of laser frequency as a percentage of incident intensity, measured from the Doppler-free
resonances. Left: Carrier intensity, continuous line is J 2

0 (P ), broken line is J 2
0 (
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P) Right: First-order
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Fig. 10. Error signal produced by the feedback loop when the laser is scanned over the F = 3 → F ′ = 3–4
cross-over peak. The phase was varied by 90◦ using the phase-shifting cable shown in Fig. 7. The graph on
the right has a steeper slope in the vicinity of the zero crossing.

than for the case when M is small. Similarly, the intensity of the first-order sideband increases more
rapidly than suggested by the theoretical treatment that ignores higher order terms. We have confirmed
these trends using a commercial EOM operating at 3 GHz. The experiment involved measuring the
amplitude of the sidebands that were widely separated and much better resolved than in Fig. 8. Thus, it
was possible to detect sidebands with sufficient signal-to-noise for small values for M . The results show
that the sideband intensity scales as J 2(

√
P) for M � 1, and that it scales as J 2(P ) as M becomes

comparable to unity.
Figure 10 shows the dispersion-shaped error signal produced when the laser is scanned over the

F = 3 → F ′ = 3–4 cross-over peak in 85Rb. The rubidium spectrum and the origin of the cross-over
peaks are explained in refs. 3 and 6. The dispersion shapes resemble the theoretical predictions in Fig. 4.
The phase of the signal can be varied by altering the length of the phase-shifting cable shown in Fig. 7.
As explained in refs. 3 and 4, the feedback signal can be used to stabilize the laser frequency for atom-
trapping applications. For each of the error signals shown in Fig. 10, a particular RF phase will bring
the laser toward the atomic resonance and a 180◦ phase shift will invert the shape of the error signal and
push the laser away from resonance. If the EOM drive frequency is increased, the distinction between
the shapes becomes more apparent. In general, the error signal produced by the differential phases is
preferred for laser-locking since it has a steep slope at the atomic resonance.

5. Conclusions

We have designed an efficient electro-optic modulator that operates at ∼20 MHz with a Q factor of
∼10. The device produces appreciable sideband intensity for modest RF drive powers of the order of
0.5 W. The cost of the device is ∼$700 and this is essentially determined by the price of the antireflection-
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Table 1. List of components and prices.

Component Unit cost ($)

Leysop 1 × 1 × 10 mm LiTaO3 Crystal 700
EOM Copper inductor wire —

Copper box —
2 × minicircuits ZOS-50 VCO 140
minicircuits ZP-10514 mixer 70

Driver minicircuits BLP-100 filter 35
minicircuits ZFL-500 amplifier 80
minicircuits ZHL-1A amplifier 250
1" Glass plate
2 × 1" mirror

Setup 50–50 Beam splitter
2 Collimating lenses
Rubidium vapor cell
Thorlabs DET 210 high-speed photodiode

coated crystal. A breakdown of the cost of components is found in Table 1. The low cost would permit
extensive use in undergraduate laboratory experiments.
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