A calculation of the time-of-flight distribution of trapped atoms
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We consider the ballistic expansion of a cloud of trapped atoms falling under the influence of
gravity. Using a simple coordinate transformation, we derive an analytical expression for the
time-of-flight signal. The properties of the signal can be used to infer the initial temperature of the
cloud. We first assume a point size cloud with an isotropic velocity distribution to explain the
physical basis of the calculation. The treatment is then generalized to include a finite-size cloud with
an anisotropic velocity distribution, and an exact result for the signal is derived. The properties of
the signal are discussed, and an intuitive picture is presented to explain how initial conditions
determine the features of the signal. #0802 American Association of Physics Teachers.
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[. INTRODUCTION II. INTUITIVE PICTURE

During the last 15 years, laser cooling and trapping of We first describe the solution to the problem based on

. ; simple physical considerations. The initial velocity distribu-
atoms has become an active area of research. It is now OHon of the atoms in the cloud is a Gaussiéviaxwell—

tinely possible to obtain samples of cold atoms with temperagg|tzmann velocity distribution It is characterized by the
tures of~100uK."* A measurement of the initial tempera- ,ost probable speah= 2kT/m, wherek is Boltzmann's
ture of the cloud of atoms is crucial for characterizing the.,nstantT is the initial temperature of the cloud, andis
properties of atom traps. The temperature of the cloud can Bge atomic mass. The width of the TOF signal should corre-
inferred from the velocity distribution of atoms in the cloud. spond to the difference in arrival times of two atoms, each
A well-known technique of measuring this velocity distribu- having the most probable speeg, one going directly up-
tion is the time-of-flight(TOF) method. In this method, a \yard, and the other directly downward. If the initial density
probe laser, focused in the form of a sheet, is placed undeps the cloud is a maximum at the center, then the centroid of

neath the cloudsee Fig. 1. When the trapping forces are g cioud will reach the probe at 21,/g. This time will
turned off, the cold atom cloud expands ballistically and fa"Scorrespond to a peak in the TOF signal. Hegés the dis-

through the probe under the influence of gravity. It is thentalnce from the probe arg=9.81 m/2 is the earth’s gravita-

possible to detect the_fl_u_orescence from the atoms as the%nal acceleration. Based on the essential features of the
reach the sheet. The initial temperature can be inferred b

ina the Tl ; ) ¢ 6 YOF signal discussed above, one can expect that its shape
measuring the fluorescence as a function of time. will be a Gaussian. We will now proceed to formulate a

_In this paper we present a detailed derivation of the TORyaihematical treatment of this problem and arrive at an exact
signal recorded by the detector, that is, the number of atomgg|,tion.

arriving at the probe laser as a function of time. We model

the laser placed underneath the atom cloud as a plane shegf. cAl CULATION FOR A POINT-SIZED

We assume that the cloud consists of noninteracting partic'%OTROPIC CLOUD

and that it has a Maxwell-Boltzmann velocity distribution.

We therefore use the equations of ballistic motion for par- We assume a Maxwell-Boltzmann isotropic probability
ticles falling under the influence of gravity to find their dis- distribution for the velocity, that is,

tribution in time and position on the sheet. We then integrate m |32 m(v2+02+0v2)

over the spatial dimensions of the probe la@treet to ob- N(U)d3vz( ) exp( _ XY 72 43y,
tain the distribution in time. Previous calculations of the TOF 27KT 2kT

signal have used sophisticated Green’s function techniques to )

find the evolution of the density of the cloddHere, we show wherev,, vy, v, are the speeds along they, z directions
that the problem can be solved using a simple coordinatéh the cloud’s coordinate system, respectively. We take the
transformation, which makes the solution more transparentorigin of the coordinates to be the initial location of the atom
In Sec. Il an intuitive description of the solution to the cloud. A second coordinate system is needed to specify the
problem is given. For a simplified derivation of the TOF |ocation of the atoms arriving at the sheet at a ttmEor this
signal, we start in Sec. Il with the following two assump- coordinate system we will take the sheet to bexthg plane
tions. (a) We assume a point-sized cloud, that is, we do noWith its origin at the point on the sheet just underneath the
consider the spatial extent of the cloud. This assumption igloud’'s center. We need this coordinate system because it
valid if the distance of the probe laser from the cloud isrepresents the measuring apparatus, that is, the probe laser.
much larger than the size of the cloutd) The velocity dis- The problem is therefore reduced to transforming ELq.
tribution is isotropic. Subsequently, in Sec. IV, we consider &rom a function of ¢, ,v,,v,) to a function of ,y,t).
more realistic model that assumes the cloud has a finite size. We use Newton’s equations for a ballistic motion of a
In addition, the effect of an anisotropic velocity distribution particle accelerated by the earth’s gravitational field to find
is investigated in Sec. V. the relationship between those two coordinates systems,
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Fig. 1. In a typical experiment, the detector images the fluorescence at
right angle with respect to the direction of propagation of the probe lase
beam indicated by the arrows.

_IO:th_ %gtzi (Za)
X=0v,t, (2b)
y=uyt, (20

wherel, is the distance from the center of the cloud to the
sheet. If we express the velocity components as functions of

(x,y,t), we find

v, = (39t I/t (33
vy=Xxlt, (3b)
vy=Yylt. (30

We must also determine how the differentidb in (1) trans-
forms intodx dy dt We use the Jacobian determindnfor
this purpose, that is, with

duy dvy duy 1 -
ox TTx TEx 0 —
X ay at t t
dvy dvy v 1 -y
= | Dy By Byl o = Y

ax ay ot t ot
dv, dv, dv, 1 lo
—= = = 0 0 —g+
ox ay ot 297y

1.2

s0t°+1g

= 4

Substituting Eqs(3) and (4) into Eqg. (1), we find the prob-
ability density with respect to thex(y,t) coordinate system,

(39t2—1g)2+x?+y?

vét2

N(x,y,t)dx dy dt=Aexp( -

(29t%+1o)
><2—40dx dy dt

t ©)

Here, A=(m/2wkT)%*? andvo= 2k T/m is the most prob-
able velocity.

However, we are interested in the signal recorded, that is,

the probability density as a function of time only. We there-
fore integrate Eq.5) over the spatial dimensions of the

probe. For convenience, we assume the dimensions to be

infinite. (To model an experiment, we must perform the in-
tegral over a finite region, which would require the integral
to be evaluated numericallyThus,
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Fig. 2. Time-of-flight (TOF) signal for a point-sized cloud witi'=1.41
X 10 %K, l,=0.3m, andm=1.40x 10" ®kg.

n(t)= fjc jjc N(x,y,t)dx dy
(39t°—10)?

5o - 25

Figure 2 is a plot of this function witlf=1.41x10 %K
(Doppler limit for cloud of®Rb atoms, 1,=0.3m, andm
=1.40<10 %°kg (®*Rbatoms). A peak occurs at
=0.247 s as one would expect physically, because the cen-
troid of the cloud reaches the detector after\2l,/g
=0.247s.

As described earlier, the width of the signal should corre-
spond to the difference in arrival times between an atom
going directly up with speed, and one that goes directly
down with the same speed. Using Efa), this difference is
equal tot, —t_=2v,/g, where

iU0+ \ Ug"f‘ 2'09
g .

Table | shows different temperatures and the corresponding
values of the ¥ width of the TOF signal calculated using
Eq. (6). The width is then compared withvd/g. We note

that the agreement between the two predictions is excellent.
The agreement corresponds to our physical expectations as
described in Sec. Il and serves as a test of &j. One
should note that the difference between the two predictions
increases as the temperatydefined byv,) increases. This
difference is due to the fact that the shape of the TOF signal
deviates from a Gaussian as discussed at the end of Sec. IV.

39t%+1,
-

2
0

(6

=Amv

te

Table |. Comparison between the predicted signal width angl/@, for
different initial temperatures of the cloud. The full width at half maximum
(FWHM) is the predicted width of the Gaussian curve at half of its peak
value.

TemperaturgK) vo (Ml 2v,/9 (9 Signal FWHM(s)
1.41x10°° 0.052 723 0.010 760 0.010 759
5.00< 10 % 0.099 283 0.020 262 0.020 253
8.50x107° 0.129 449 0.026 418 0.026 399
1.41<10°* 0.166 725 0.034 025 0.033 985
4.50x10°4 0.297 849 0.060 786 0.060 554
7.50x10°* 0.384 522 0.078 474 0.077 971
1.10x 103 0.465 679 0.095 037 0.094 135
4.80x10°2 0.972772 0.198 525 0.189 655
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IV. FINITE-SIZE ISOTROPIC CLOUD 35
We now refine the model by taking into account the spatial T %
extent of the cloud, which we will assume to have a Gauss- .%0
ian shape. The probability density, given by Et), will now o, 15
be a function ofr andv, and is given by [9
5
2 2 2
vituitv 1
N(r,v)d3rd3v=Aexy{— X Z z — 0 0.1 0.2 0.3 0.4
vo rom Time (s)
r)2(+r§+rf 3.3 Fig. 3. TOF signal for a finite-size cloud whemy<l, with T=1.41
xexp ——— 7 d*rdv, (7)) x1074K, 1,5=0.3m, m=1.40< 10 25kg, andr,=0.001 m.
0

whereA andv, were defined previously, ang is the most
probable radial distance. We take the origin of our coordi-again, the signal of interest is obtained by integrating Eq.
nates (.ry.r,) to be the center of the cloud. Following the (11) over the spatial dimensions of the probe laser. We there-
same route as in Sec. lll, we transform this probability denfgre obtain

sity into a function of ¢,x,y,t) using the equations of mo- o

tion in (2). These equations are modified to include the fact n(t)=f j N(x,y,t)dx dy

that the initial position of the particle is at that is, some —w )

distance from the center of cloud. Therefore,

3

Uo a
o=t rut- ot 82 AT (roge ot HOT@G et
X=Tr,+v,t, (8b) (Lgt2—1,)2
B X 7 |- (12
y=ry+tut. (80 (rotovgt?)

Equation(12) reduces to Eq6) whenr,—0, as it should for
the case of a point size cloud.
Figure 3 is a plot of Eq(12) with the same parameters as
(3gt2+r,+10) in Fig. 2. We assumey=0.001 m(typical cloud siz¢ and as
— (9)  expected, we obtain the same graph as in Fig. 2 beaguse
<l,. However, agy becomes comparable tg, the signal
If we substituted into the probability density7), we obtain  becomes broader and asymmetric as shown in Fig. 4, where
we have assumedy=0.15m. The broadening occurs be-
5 1 (39t%+r,+1p) cause we now have many more atoms starting close to the
N(r.xy,nd*rdx dy dt=A-z—z; e probe. Hence, it takes them less time to reach it. We also
0 have many more atoms that are further away from the probe.
xexp—f)d®rdxdydt (108  Therefore, they will require more time to arrive at it.
. L We note that the arrival times of two oppositely directed
where the argument of the exponential function is given by 5t5ms along the vertical, given by

Using Eq. (8), we express uy,vy,v,) as functions of
(x,y,t;r). Evaluating the Jacobian we find,

2
f= 2_+i2 r2_gr +X_ + 2i+£2 r2 _iUo+\U§+2|Og+2rog
vot2 r2) x vot2 X vot2 vot2 r2)y te= g )
2y y? 1 1\, are asymmetric with respect to the peak of the sigwalich
“a2yt oz Tl e ) occurs at=/2l,/g). This asymmetry causes the TOF signal
0 0 0 0 shape to deviate from a Gaussian. When the cloud size is

small (ro<<lpy) and its temperature, that is, the characteristic
(10b speed, is Iow&§< 2gly), the arrival times can be written as

_2(%§]t2_|o)r (39t°—10)?
vot? z vot?

We now integrate Eq.10) over all space to obtain an expres-

sion for the probability density as a function ox,y,t), 35
that is,
= 25
© ) o) ED
N(x,y,t)=j f f N(r,x,y,t)d% A
— o0 — 00 — 00 o9
@)
v5 22, L 2, 2 = s
=A— 55| lovst?+ Zgt?(2rg+v tZ))
t (rg+uft?)>? 0 2 oo 0 0.1 0.2 0.3 0.4
Time (s)

(11 Fig. 4. TOF signal for a finite-size cloud whep is comparable td, with

2 2 1442 2
(XE+y“+(z29t°=10)%)
xXexp — .
T=1.41X10"*K; 1,=0.3m, m=1.40x 10 ®kg, andr,=0.15m.

(ri+vat?)
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35

U1l2U3 ™ 202 1at2/0p2 22
n(t)=A lgust®+ 50t°(2rg+uvst
5 bs (t) " (r(2)+v§t2)3’2( vt + 3gt°(2rg+ust?))
&h
172} 15 (%gt2_|0)2
e Xexp ——2 275 |- (14

We note that the width of the curve depends onlyvgnr,
¢ 0.1 0.2 0.3 0.4 andly. It is only the vertical spee¢along thez direction
Time (s) that determines the width of the signal. As was explained
Fig. 5. TOF signal for a finite-size cloud when the probe is placed at thePreviously, the width corresponds to the difference in arrival
center of the cloud with,=0; T=1.41x10"*K, m=1.40x10"%®kg, and  time between two atoms, one going up, and the other going
ro=0.001m. down, both with speeds. This difference is 235/9.

VI. CONCLUSIONS

21y vg Using a simple coordinate transformation, we were able to
te= Eig derive an expression for the TOF signal recorded by a detec-
o ) ) _tor placed some distance below the trapped cloud. This co-
which is symmetric about the peak of the signal. For thisgrdinate transformation is based on the ballistic equations of
reason, the signal is symmetric at low temperatures anghotion for a particle falling in the earth’s gravitational field.
small cloud dimensions. The probe laser was modeled as an infinite plane sheet. The
Note that the typical size of cold atom clouds never ex—cijoud has a Gaussian spatial profile and a Maxwell—
ceeds a few millimeters, and the probe is typically placed aBoltzmann velocity distribution. By fitting an experimental
a distance larger than the size of the trapping beamgesylt to the predicted signal, one can determine the initial
(~1cm). In practice, there is no contribution from the tail temperature of the cloud.
of the Gaussian spatial distribution at the location of the We note that our calculations are carried out by assuming
probe (there are no cold atoms beyond a few millimetersthat the probe laser is an infinite sheet of negligible thick-
from the center of the trap ness. Our results would be in perfect agreement with Ref. 4
Figure 5 is a plot of the signal when the probe laser iswhere the TOF signal was derived using Green’s function
placed at the center of the clogthat is,|,=0). We notice  techniquey if the integral in Eq.(12) is evaluated by taking
the exponential decay of the signal corresponding to atomito account the spatial profile of the probe. The discrepancy
leaving the trapping volume. We have also tested the calcuarises because Ref. 4 assumes an elliptical cross section for
lation by placing the probe laser above the tffgw example, the probe beam. As mentioned previously, in order to model
lo=—2 mm). In this case we find that the amplitude of the an experiment, one has to integrate Etp) over the finite
signal is substantially diminished. The reduction in signalextent of the probe. Finally, we note that the calculation can
amplitude is due to the fact that most of the atoms are turnethodel a probe laser placed at any location in space, includ-

around by gravity and never reach the probe. ing the region of the trap. Thus the calculation can predict
the time it takes atoms to leave the trapping volume.
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