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We consider the ballistic expansion of a cloud of trapped atoms falling under the influence of
gravity. Using a simple coordinate transformation, we derive an analytical expression for the
time-of-flight signal. The properties of the signal can be used to infer the initial temperature of the
cloud. We first assume a point size cloud with an isotropic velocity distribution to explain the
physical basis of the calculation. The treatment is then generalized to include a finite-size cloud with
an anisotropic velocity distribution, and an exact result for the signal is derived. The properties of
the signal are discussed, and an intuitive picture is presented to explain how initial conditions
determine the features of the signal. ©2002 American Association of Physics Teachers.
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I. INTRODUCTION

During the last 15 years, laser cooling and trapping
atoms has become an active area of research. It is now
tinely possible to obtain samples of cold atoms with tempe
tures of;100mK.1,2 A measurement of the initial tempera
ture of the cloud of atoms is crucial for characterizing t
properties of atom traps. The temperature of the cloud ca
inferred from the velocity distribution of atoms in the clou
A well-known technique of measuring this velocity distrib
tion is the time-of-flight~TOF! method. In this method, a
probe laser, focused in the form of a sheet, is placed un
neath the cloud~see Fig. 1!. When the trapping forces ar
turned off, the cold atom cloud expands ballistically and fa
through the probe under the influence of gravity. It is th
possible to detect the fluorescence from the atoms as
reach the sheet. The initial temperature can be inferred
measuring the fluorescence as a function of time.3,4

In this paper we present a detailed derivation of the T
signal recorded by the detector, that is, the number of at
arriving at the probe laser as a function of time. We mo
the laser placed underneath the atom cloud as a plane s
We assume that the cloud consists of noninteracting parti
and that it has a Maxwell–Boltzmann velocity distributio
We therefore use the equations of ballistic motion for p
ticles falling under the influence of gravity to find their di
tribution in time and position on the sheet. We then integr
over the spatial dimensions of the probe laser~sheet! to ob-
tain the distribution in time. Previous calculations of the TO
signal have used sophisticated Green’s function technique
find the evolution of the density of the cloud.4 Here, we show
that the problem can be solved using a simple coordin
transformation, which makes the solution more transpare

In Sec. II an intuitive description of the solution to th
problem is given. For a simplified derivation of the TO
signal, we start in Sec. III with the following two assum
tions. ~a! We assume a point-sized cloud, that is, we do
consider the spatial extent of the cloud. This assumptio
valid if the distance of the probe laser from the cloud
much larger than the size of the cloud.~b! The velocity dis-
tribution is isotropic. Subsequently, in Sec. IV, we conside
more realistic model that assumes the cloud has a finite s
In addition, the effect of an anisotropic velocity distributio
is investigated in Sec. V.
149 Am. J. Phys.70 ~2!, February 2002 http://ojps.aip.org
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II. INTUITIVE PICTURE

We first describe the solution to the problem based
simple physical considerations. The initial velocity distrib
tion of the atoms in the cloud is a Gaussian~Maxwell–
Boltzmann velocity distribution!. It is characterized by the
most probable speedv05A2kT/m, wherek is Boltzmann’s
constant,T is the initial temperature of the cloud, andm is
the atomic mass. The width of the TOF signal should cor
spond to the difference in arrival times of two atoms, ea
having the most probable speedv0 , one going directly up-
ward, and the other directly downward. If the initial dens
of the cloud is a maximum at the center, then the centroid
the cloud will reach the probe att5A2l 0 /g. This time will
correspond to a peak in the TOF signal. Herel 0 is the dis-
tance from the probe andg59.81 m/s2 is the earth’s gravita-
tional acceleration. Based on the essential features of
TOF signal discussed above, one can expect that its sh
will be a Gaussian. We will now proceed to formulate
mathematical treatment of this problem and arrive at an ex
solution.

III. CALCULATION FOR A POINT-SIZED
ISOTROPIC CLOUD

We assume a Maxwell–Boltzmann isotropic probabil
distribution for the velocity, that is,

N~v !d3v5S m

2pkTD 3/2

expS 2
m~vx

21vy
21vz

2!

2kT Dd3v,

~1!

wherevx , vy , vz are the speeds along thex, y, z directions
in the cloud’s coordinate system, respectively. We take
origin of the coordinates to be the initial location of the ato
cloud. A second coordinate system is needed to specify
location of the atoms arriving at the sheet at a timet. For this
coordinate system we will take the sheet to be thex–y plane
with its origin at the point on the sheet just underneath
cloud’s center. We need this coordinate system becaus
represents the measuring apparatus, that is, the probe
The problem is therefore reduced to transforming Eq.~1!
from a function of (vx ,vy ,vz) to a function of (x,y,t).

We use Newton’s equations for a ballistic motion of
particle accelerated by the earth’s gravitational field to fi
the relationship between those two coordinates systems,
149/ajp/ © 2002 American Association of Physics Teachers
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2 l 05vzt2
1
2 gt2, ~2a!

x5vxt, ~2b!

y5vyt, ~2c!

where l 0 is the distance from the center of the cloud to t
sheet. If we express the velocity components as function
(x,y,t), we find

vz5~ 1
2 gt22 l 0!/t, ~3a!

vx5x/t, ~3b!

vy5y/t. ~3c!

We must also determine how the differentiald3v in ~1! trans-
forms intodx dy dt. We use the Jacobian determinantJ for
this purpose, that is, with

J5U ]vx

]x

]vx

]y

]vx

]t

]vy

]x

]vy

]y

]vy

]t

]vz

]x

]vz

]y

]vz

]t

U5U 1

t
0

2x

t2

0
1

t

2y

t2

0 0
1

2
g1

l 0

t2

U
5

1
2 gt21 l 0

t4 . ~4!

Substituting Eqs.~3! and ~4! into Eq. ~1!, we find the prob-
ability density with respect to the (x,y,t) coordinate system

N~x,y,t !dx dy dt5A expS 2
~ 1

2 gt22 l 0!21x21y2

v0
2t2 D

3
~ 1

2 gt21 l 0!

t4 dx dy dt. ~5!

Here,A5(m/2pkT)3/2 and v05A2kT/m is the most prob-
able velocity.

However, we are interested in the signal recorded, tha
the probability density as a function of time only. We ther
fore integrate Eq.~5! over the spatial dimensions of th
probe. For convenience, we assume the dimensions to
infinite. ~To model an experiment, we must perform the
tegral over a finite region, which would require the integ
to be evaluated numerically.! Thus,

Fig. 1. In a typical experiment, the detector images the fluorescence
right angle with respect to the direction of propagation of the probe la
beam indicated by the arrows.
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n~ t !5E
2`

` E
2`

`

N~x,y,t !dx dy

5Apv0
2S 1

2 gt21 l 0

t2 D expS 2
~ 1

2 gt22 l 0!2

v0
2t2 D . ~6!

Figure 2 is a plot of this function withT51.4131024 K
~Doppler limit for cloud of85Rb atoms!, l 050.3 m, andm
51.40310225kg (85Rb atoms). A peak occurs att
50.247 s as one would expect physically, because the
troid of the cloud reaches the detector aftert5A2l 0 /g
50.247 s.

As described earlier, the width of the signal should cor
spond to the difference in arrival times between an at
going directly up with speedv0 and one that goes directl
down with the same speed. Using Eq.~2a!, this difference is
equal tot12t252v0 /g, where

t65
6v01Av0

212l 0g

g
.

Table I shows different temperatures and the correspond
values of the 1/e width of the TOF signal calculated usin
Eq. ~6!. The width is then compared with 2v0 /g. We note
that the agreement between the two predictions is excell
The agreement corresponds to our physical expectation
described in Sec. II and serves as a test of Eq.~6!. One
should note that the difference between the two predicti
increases as the temperature~defined byv0! increases. This
difference is due to the fact that the shape of the TOF sig
deviates from a Gaussian as discussed at the end of Sec

t a
r

Fig. 2. Time-of-flight ~TOF! signal for a point-sized cloud withT51.41
31024 K, l 050.3 m, andm51.40310225 kg.

Table I. Comparison between the predicted signal width and 2v0 /g, for
different initial temperatures of the cloud. The full width at half maximu
~FWHM! is the predicted width of the Gaussian curve at half of its pe
value.

Temperature~K! v0 ~m/s! 2v0 /g ~s! Signal FWHM ~s!

1.4131025 0.052 723 0.010 760 0.010 759
5.0031025 0.099 283 0.020 262 0.020 253
8.5031025 0.129 449 0.026 418 0.026 399
1.4131024 0.166 725 0.034 025 0.033 985
4.5031024 0.297 849 0.060 786 0.060 554
7.5031024 0.384 522 0.078 474 0.077 971
1.1031023 0.465 679 0.095 037 0.094 135
4.8031023 0.972 772 0.198 525 0.189 655
150Yavinet al.
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IV. FINITE-SIZE ISOTROPIC CLOUD

We now refine the model by taking into account the spa
extent of the cloud, which we will assume to have a Gau
ian shape. The probability density, given by Eq.~1!, will now
be a function ofr andv, and is given by

N~r ,v!d3 rd3 v5A expS 2
vx

21vy
21vz

2

v0
2 D 1

r 0
3p3/2

3expS 2
r x

21r y
21r z

2

r 0
2 D d3 rd3 v, ~7!

whereA andv0 were defined previously, andr 0 is the most
probable radial distance. We take the origin of our coor
nates (r x ,r y ,r z) to be the center of the cloud. Following th
same route as in Sec. III, we transform this probability d
sity into a function of (r ,x,y,t) using the equations of mo
tion in ~2!. These equations are modified to include the f
that the initial position of the particle is atr , that is, some
distance from the center of cloud. Therefore,

2 l 05r z1vzt2
1
2 gt2, ~8a!

x5r x1vxt, ~8b!

y5r y1vyt. ~8c!

Using Eq. ~8!, we express (vx ,vy ,vz) as functions of
(x,y,t;r ). Evaluating the Jacobian we find,

J5
~ 1

2 gt21r z1 l 0!

t4 . ~9!

If we substituteJ into the probability density~7!, we obtain

N~r ,x,y,t !d3 r dx dy dt5A
1

r 0
3p3/2

~ 1
2 gt21r z1 l 0!

t4

3exp~2 f !d3 r dx dy dt, ~10a!

where the argument of the exponential function is given

f 5S S 1

v0
2t2 1

1

r 0
2D r x

22
2x

v0
2t2 r x1

x2

v0
2t2D 1S S 1

v0
2t2 1

1

r 0
2D r y

2

2
2y

v0
2t2 r y1

y2

v0
2t2D 1S S 1

v0
2t2 1

1

r 0
2D r z

2

2
2~ 1

2gt22 l 0!

v0
2t2 r z1

~ 1
2gt22 l 0!2

v0
2t2 D . ~10b!

We now integrate Eq.~10! over all space to obtain an expre
sion for the probability density as a function of (x,y,t),
that is,

N~x,y,t !5E
2`

` E
2`

` E
2`

`

N~r ,x,y,t !d3r

5A
v0

3

t

1

~r 0
21v0

2t2!5/2S l 0v0
2t21

1

2
gt2~2r 0

21v0
2t2! D

3expS 2
~x21y21~ 1

2 gt22 l 0!2!

~r 0
21v0

2t2!
D . ~11!
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Again, the signal of interest is obtained by integrating E
~11! over the spatial dimensions of the probe laser. We the
fore obtain

n~ t !5E
2`

` E
2`

`

N~x,y,t !dx dy

5A
v0

3

t

p

~r 0
21v0

2t2!3/2~ l 0v0
2t21 1

2 gt2~2r 0
21v0

2t2!!

3expS 2
~ 1

2 gt22 l 0!2

~r 0
21v0

2t2!
D . ~12!

Equation~12! reduces to Eq.~6! whenr 0→0, as it should for
the case of a point size cloud.

Figure 3 is a plot of Eq.~12! with the same parameters a
in Fig. 2. We assumer 050.001 m~typical cloud size! and as
expected, we obtain the same graph as in Fig. 2 becausr 0

! l 0 . However, asr 0 becomes comparable tol 0 , the signal
becomes broader and asymmetric as shown in Fig. 4, w
we have assumedr 050.15 m. The broadening occurs b
cause we now have many more atoms starting close to
probe. Hence, it takes them less time to reach it. We a
have many more atoms that are further away from the pro
Therefore, they will require more time to arrive at it.

We note that the arrival times of two oppositely direct
atoms along the vertical, given by

t65
6v01Av0

212l 0g12r 0g

g
,

are asymmetric with respect to the peak of the signal~which
occurs att5A2l 0 /g!. This asymmetry causes the TOF sign
shape to deviate from a Gaussian. When the cloud siz
small (r 0! l 0) and its temperature, that is, the characteris
speed, is low (v0

2!2gl0), the arrival times can be written a

Fig. 3. TOF signal for a finite-size cloud whenr 0! l 0 with T51.41
31024 K, l 050.3 m, m51.40310225 kg, andr 050.001 m.

Fig. 4. TOF signal for a finite-size cloud whenr 0 is comparable tol 0 with
T51.4131024 K; l 050.3 m, m51.40310225 kg, andr 050.15 m.
151Yavinet al.
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v0
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which is symmetric about the peak of the signal. For t
reason, the signal is symmetric at low temperatures
small cloud dimensions.

Note that the typical size of cold atom clouds never e
ceeds a few millimeters, and the probe is typically placed
a distance larger than the size of the trapping bea
(;1 cm). In practice, there is no contribution from the t
of the Gaussian spatial distribution at the location of
probe ~there are no cold atoms beyond a few millimete
from the center of the trap!.

Figure 5 is a plot of the signal when the probe laser
placed at the center of the cloud~that is, l 050!. We notice
the exponential decay of the signal corresponding to ato
leaving the trapping volume. We have also tested the ca
lation by placing the probe laser above the trap~for example,
l 0522 mm!. In this case we find that the amplitude of th
signal is substantially diminished. The reduction in sign
amplitude is due to the fact that most of the atoms are tur
around by gravity and never reach the probe.

V. ANISOTROPIC FINITE SIZE CLOUD

We now examine the case where the initial temperatur
the atom cloud is not necessarily the same in all directio
In this case, one must modify the Maxwell–Boltzmann v
locity distribution appropriately,

N~r ,v!d3 rd3 v5AexpS 2
vx

2

v1
2 2

vy
2

v2
2 2

vz
2

v3
2D 1

r 0
3p3/2

3expS 2
r x

21r y
21r z

2

r 0
2 D d3 rd3 v. ~13!

Here

A5S m

2pkD 3/2 1

AT1T2T3

, v i5A2kTi

m
.

Following the same steps as in Sec. IV, we arrive at an a
lytical expression for the observed signal,

Fig. 5. TOF signal for a finite-size cloud when the probe is placed at
center of the cloud withl 050; T51.4131024 K, m51.40310225 kg, and
r 050.001 m.
152 Am. J. Phys., Vol. 70, No. 2, February 2002
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n~ t !5A
v1v2v3

t

p

~r 0
21v3

2t2!3/2~ l 0v3
2t21 1

2 gt2~2r 0
21v3

2t2!!

3expS 2
~ 1

2 gt22 l 0!2

r 0
21v3

2t2 D . ~14!

We note that the width of the curve depends only onv3 , r 0 ,
and l 0 . It is only the vertical speed~along thez direction!
that determines the width of the signal. As was explain
previously, the width corresponds to the difference in arri
time between two atoms, one going up, and the other go
down, both with speedv3 . This difference is 2v3 /g.

VI. CONCLUSIONS

Using a simple coordinate transformation, we were able
derive an expression for the TOF signal recorded by a de
tor placed some distance below the trapped cloud. This
ordinate transformation is based on the ballistic equation
motion for a particle falling in the earth’s gravitational field
The probe laser was modeled as an infinite plane sheet.
cloud has a Gaussian spatial profile and a Maxwe
Boltzmann velocity distribution. By fitting an experiment
result to the predicted signal, one can determine the in
temperature of the cloud.

We note that our calculations are carried out by assum
that the probe laser is an infinite sheet of negligible thic
ness. Our results would be in perfect agreement with Re
~where the TOF signal was derived using Green’s funct
techniques!, if the integral in Eq.~12! is evaluated by taking
into account the spatial profile of the probe. The discrepa
arises because Ref. 4 assumes an elliptical cross sectio
the probe beam. As mentioned previously, in order to mo
an experiment, one has to integrate Eq.~12! over the finite
extent of the probe. Finally, we note that the calculation c
model a probe laser placed at any location in space, inc
ing the region of the trap. Thus the calculation can pred
the time it takes atoms to leave the trapping volume.
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